forked from vafeiadis/hahn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHahnRewrite.v
625 lines (540 loc) · 24.9 KB
/
HahnRewrite.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
(** * Support for rewriting *)
Require Import HahnBase HahnList HahnRelationsBasic HahnEquational HahnFuneq HahnSets.
Set Implicit Arguments.
(** We add some support for rewriting with [inclusion] and [same_relation]
relations. We start with some basic helper lemmas. *)
Section HelperLemmas.
Variable A : Type.
Variables r1 r2 r3 r4 r5 r6 r7 r r' : relation A.
Lemma hahn_subset_exp (s s' : A -> Prop) :
s ⊆₁ s' -> forall x, s x -> s' x.
Proof.
eauto.
Qed.
Lemma hahn_inclusion_exp :
r ⊆ r' -> forall x y, r x y -> r' x y.
Proof.
eauto.
Qed.
Lemma seq2 (L : r1 ⨾ r2 ≡ r) s :
r1 ⨾ r2 ⨾ s ≡ r ⨾ s.
Proof.
rewrite <- L, seqA; vauto.
Qed.
Lemma seq3 (L : r1 ⨾ r2 ⨾ r3 ≡ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ s ≡ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma seq4 (L : r1 ⨾ r2 ⨾ r3 ⨾ r4 ≡ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ s ≡ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma seq5 (L : r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ≡ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⨾ s ≡ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma seq6 (L : r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⨾ r6 ≡ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⨾ r6 ⨾ s ≡ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma sin2 (L : r1 ⨾ r2 ⊆ r) s :
r1 ⨾ r2 ⨾ s ⊆ r ⨾ s.
Proof.
rewrite <- L, seqA; vauto.
Qed.
Lemma sin3 (L : r1 ⨾ r2 ⨾ r3 ⊆ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ s ⊆ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma sin4 (L : r1 ⨾ r2 ⨾ r3 ⨾ r4 ⊆ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ s ⊆ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma sin5 (L : r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⊆ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⨾ s ⊆ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
Lemma sin6 (L : r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⨾ r6 ⊆ r) s :
r1 ⨾ r2 ⨾ r3 ⨾ r4 ⨾ r5 ⨾ r6 ⨾ s ⊆ r ⨾ s.
Proof.
rewrite <- L, !seqA; vauto.
Qed.
End HelperLemmas.
(** We proceed with a set of rewrite tactics *)
Tactic Notation "hahnf_rewrite" uconstr(EQ) :=
match goal with
| |- _ _ _ => eapply hahn_inclusion_exp; [solve[rewrite EQ; apply inclusion_refl2]|]
| |- _ _ => eapply hahn_subset_exp; [solve[rewrite EQ; apply set_subset_refl2]|]
| |- _ => rewrite EQ
end.
Tactic Notation "hahnf_rewrite" "<-" uconstr(EQ) :=
match goal with
| |- _ _ _ => eapply hahn_inclusion_exp; [solve[rewrite <- EQ; apply inclusion_refl2]|]
| |- _ _ => eapply hahn_subset_exp; [solve[rewrite <- EQ; apply set_subset_refl2]|]
| |- _ => rewrite <- EQ
end.
Tactic Notation "hahnf_rewrite" uconstr(EQ) "in" hyp(H) :=
match type of H with
| _ _ _ => eapply hahn_inclusion_exp in H; [|solve[rewrite EQ; apply inclusion_refl2]]
| _ _ => eapply hahn_subset_exp in H; [|solve[rewrite EQ; apply set_subset_refl2]]
| _ => rewrite EQ in H
end.
Tactic Notation "hahnf_rewrite" "<-" uconstr(EQ) "in" hyp(H) :=
match type of H with
| _ _ _ => eapply hahn_inclusion_exp in H; [|solve[rewrite <- EQ; apply inclusion_refl2]]
| _ _ => eapply hahn_subset_exp in H; [|solve[rewrite <- EQ; apply set_subset_refl2]]
| _ => rewrite <- EQ in H
end.
Tactic Notation "hahn_rewrite" uconstr(EQ) :=
match goal with
| |- _ _ _ => eapply hahn_inclusion_exp; [solve [rewrite EQ; apply inclusion_refl2]|]
| |- _ => rewrite EQ
end.
Tactic Notation "hahn_rewrite" "<-" uconstr(EQ) :=
match goal with
| |- _ _ _ => eapply hahn_inclusion_exp; [solve [rewrite <- EQ; apply inclusion_refl2]|]
| |- _ => rewrite <- EQ
end.
Tactic Notation "hahn_rewrite" uconstr(EQ) "in" hyp(H) :=
match type of H with
| _ _ _ => eapply hahn_inclusion_exp in H; [|solve [rewrite EQ; apply inclusion_refl2]]
| _ => rewrite EQ in H
end.
Tactic Notation "hahn_rewrite" "<-" uconstr(EQ) "in" hyp(H) :=
match type of H with
| _ _ _ => eapply hahn_inclusion_exp in H; [|solve [rewrite <- EQ; apply inclusion_refl2]]
| _ => rewrite <- EQ in H
end.
Tactic Notation "hahn_seq_rewrite" uconstr(x) :=
first [ hahn_rewrite x
| hahn_rewrite (seq2 x)
| hahn_rewrite (fun a => seq2 (x a))
| hahn_rewrite (fun a b => seq2 (x a b))
| hahn_rewrite (fun a b c => seq2 (x a b c))
| hahn_rewrite (fun a b c d => seq2 (x a b c d))
| hahn_rewrite (fun a b c d e => seq2 (x a b c d e))
| hahn_rewrite (fun a b c d e f => seq2 (x a b c d e f))
| hahn_rewrite (seq3 x)
| hahn_rewrite (fun a => seq3 (x a))
| hahn_rewrite (fun a b => seq3 (x a b))
| hahn_rewrite (fun a b c => seq3 (x a b c))
| hahn_rewrite (fun a b c d => seq3 (x a b c d))
| hahn_rewrite (fun a b c d e => seq3 (x a b c d e))
| hahn_rewrite (fun a b c d e f => seq3 (x a b c d e f))
| hahn_rewrite (seq4 x)
| hahn_rewrite (fun a => seq4 (x a))
| hahn_rewrite (fun a b => seq4 (x a b))
| hahn_rewrite (fun a b c => seq4 (x a b c))
| hahn_rewrite (fun a b c d => seq4 (x a b c d))
| hahn_rewrite (fun a b c d e => seq4 (x a b c d e))
| hahn_rewrite (fun a b c d e f => seq4 (x a b c d e f))
| hahn_rewrite (seq5 x)
| hahn_rewrite (fun a => seq5 (x a))
| hahn_rewrite (fun a b => seq5 (x a b))
| hahn_rewrite (fun a b c => seq5 (x a b c))
| hahn_rewrite (fun a b c d => seq5 (x a b c d))
| hahn_rewrite (fun a b c d e => seq5 (x a b c d e))
| hahn_rewrite (fun a b c d e f => seq5 (x a b c d e f))
| hahn_rewrite (seq6 x)
| hahn_rewrite (fun a => seq6 (x a))
| hahn_rewrite (fun a b => seq6 (x a b))
| hahn_rewrite (fun a b c => seq6 (x a b c))
| hahn_rewrite (fun a b c d => seq6 (x a b c d))
| hahn_rewrite (fun a b c d e => seq6 (x a b c d e))
| hahn_rewrite (fun a b c d e f => seq6 (x a b c d e f))
].
Tactic Notation "seq_rewrite" uconstr(x) :=
first [ rewrite x
| rewrite (seq2 x)
| rewrite (fun a => seq2 (x a))
| rewrite (fun a b => seq2 (x a b))
| rewrite (fun a b c => seq2 (x a b c))
| rewrite (fun a b c d => seq2 (x a b c d))
| rewrite (fun a b c d e => seq2 (x a b c d e))
| rewrite (fun a b c d e f => seq2 (x a b c d e f))
| rewrite (seq3 x)
| rewrite (fun a => seq3 (x a))
| rewrite (fun a b => seq3 (x a b))
| rewrite (fun a b c => seq3 (x a b c))
| rewrite (fun a b c d => seq3 (x a b c d))
| rewrite (fun a b c d e => seq3 (x a b c d e))
| rewrite (fun a b c d e f => seq3 (x a b c d e f))
| rewrite (seq4 x)
| rewrite (fun a => seq4 (x a))
| rewrite (fun a b => seq4 (x a b))
| rewrite (fun a b c => seq4 (x a b c))
| rewrite (fun a b c d => seq4 (x a b c d))
| rewrite (fun a b c d e => seq4 (x a b c d e))
| rewrite (fun a b c d e f => seq4 (x a b c d e f))
| rewrite (seq5 x)
| rewrite (fun a => seq5 (x a))
| rewrite (fun a b => seq5 (x a b))
| rewrite (fun a b c => seq5 (x a b c))
| rewrite (fun a b c d => seq5 (x a b c d))
| rewrite (fun a b c d e => seq5 (x a b c d e))
| rewrite (fun a b c d e f => seq5 (x a b c d e f))
| rewrite (seq6 x)
| rewrite (fun a => seq6 (x a))
| rewrite (fun a b => seq6 (x a b))
| rewrite (fun a b c => seq6 (x a b c))
| rewrite (fun a b c d => seq6 (x a b c d))
| rewrite (fun a b c d e => seq6 (x a b c d e))
| rewrite (fun a b c d e f => seq6 (x a b c d e f))
].
Tactic Notation "hahn_seq_rewrite" "<-" uconstr(x) :=
first [ hahn_rewrite <- x
| hahn_rewrite (seq2 (same_relation_sym x))
| hahn_rewrite (seq2 (same_relation_sym (x _)))
| hahn_rewrite (seq2 (same_relation_sym (x _ _)))
| hahn_rewrite (seq2 (same_relation_sym (x _ _ _)))
| hahn_rewrite (seq2 (same_relation_sym (x _ _ _ _)))
| hahn_rewrite (seq2 (same_relation_sym (x _ _ _ _ _)))
| hahn_rewrite (fun a => seq2 (same_relation_sym (x a)))
| hahn_rewrite (fun a b => seq2 (same_relation_sym (x a b)))
| hahn_rewrite (fun a b c => seq2 (same_relation_sym (x a b c)))
| hahn_rewrite (fun a b c d => seq2 (same_relation_sym (x a b c d)))
| hahn_rewrite (fun a b c d e => seq2 (same_relation_sym (x a b c d e)))
| hahn_rewrite (fun a b c d e f => seq2 (same_relation_sym (x a b c d e f)))
| hahn_rewrite (seq3 (same_relation_sym x))
| hahn_rewrite (fun a => seq3 (same_relation_sym (x a)))
| hahn_rewrite (fun a b => seq3 (same_relation_sym (x a b)))
| hahn_rewrite (fun a b c => seq3 (same_relation_sym (x a b c)))
| hahn_rewrite (fun a b c d => seq3 (same_relation_sym (x a b c d)))
| hahn_rewrite (fun a b c d e => seq3 (same_relation_sym (x a b c d e)))
| hahn_rewrite (fun a b c d e f => seq3 (same_relation_sym (x a b c d e f)))
| hahn_rewrite (seq4 (same_relation_sym x))
| hahn_rewrite (fun a => seq4 (same_relation_sym (x a)))
| hahn_rewrite (fun a b => seq4 (same_relation_sym (x a b)))
| hahn_rewrite (fun a b c => seq4 (same_relation_sym (x a b c)))
| hahn_rewrite (fun a b c d => seq4 (same_relation_sym (x a b c d)))
| hahn_rewrite (fun a b c d e => seq4 (same_relation_sym (x a b c d e)))
| hahn_rewrite (fun a b c d e f => seq4 (same_relation_sym (x a b c d e f)))
| hahn_rewrite (seq5 (same_relation_sym x))
| hahn_rewrite (fun a => seq5 (same_relation_sym (x a)))
| hahn_rewrite (fun a b => seq5 (same_relation_sym (x a b)))
| hahn_rewrite (fun a b c => seq5 (same_relation_sym (x a b c)))
| hahn_rewrite (fun a b c d => seq5 (same_relation_sym (x a b c d)))
| hahn_rewrite (fun a b c d e => seq5 (same_relation_sym (x a b c d e)))
| hahn_rewrite (fun a b c d e f => seq5 (same_relation_sym (x a b c d e f)))
| hahn_rewrite (seq6 (same_relation_sym x))
| hahn_rewrite (fun a => seq6 (same_relation_sym (x a)))
| hahn_rewrite (fun a b => seq6 (same_relation_sym (x a b)))
| hahn_rewrite (fun a b c => seq6 (same_relation_sym (x a b c)))
| hahn_rewrite (fun a b c d => seq6 (same_relation_sym (x a b c d)))
| hahn_rewrite (fun a b c d e => seq6 (same_relation_sym (x a b c d e)))
| hahn_rewrite (fun a b c d e f => seq6 (same_relation_sym (x a b c d e f)))
].
Tactic Notation "seq_rewrite" "<-" uconstr(x) :=
first [ rewrite <- x
| rewrite (seq2 (same_relation_sym x))
| rewrite (seq2 (same_relation_sym (x _)))
| rewrite (seq2 (same_relation_sym (x _ _)))
| rewrite (seq2 (same_relation_sym (x _ _ _)))
| rewrite (seq2 (same_relation_sym (x _ _ _ _)))
| rewrite (seq2 (same_relation_sym (x _ _ _ _ _)))
| rewrite (fun a => seq2 (same_relation_sym (x a)))
| rewrite (fun a b => seq2 (same_relation_sym (x a b)))
| rewrite (fun a b c => seq2 (same_relation_sym (x a b c)))
| rewrite (fun a b c d => seq2 (same_relation_sym (x a b c d)))
| rewrite (fun a b c d e => seq2 (same_relation_sym (x a b c d e)))
| rewrite (fun a b c d e f => seq2 (same_relation_sym (x a b c d e f)))
| rewrite (seq3 (same_relation_sym x))
| rewrite (fun a => seq3 (same_relation_sym (x a)))
| rewrite (fun a b => seq3 (same_relation_sym (x a b)))
| rewrite (fun a b c => seq3 (same_relation_sym (x a b c)))
| rewrite (fun a b c d => seq3 (same_relation_sym (x a b c d)))
| rewrite (fun a b c d e => seq3 (same_relation_sym (x a b c d e)))
| rewrite (fun a b c d e f => seq3 (same_relation_sym (x a b c d e f)))
| rewrite (seq4 (same_relation_sym x))
| rewrite (fun a => seq4 (same_relation_sym (x a)))
| rewrite (fun a b => seq4 (same_relation_sym (x a b)))
| rewrite (fun a b c => seq4 (same_relation_sym (x a b c)))
| rewrite (fun a b c d => seq4 (same_relation_sym (x a b c d)))
| rewrite (fun a b c d e => seq4 (same_relation_sym (x a b c d e)))
| rewrite (fun a b c d e f => seq4 (same_relation_sym (x a b c d e f)))
| rewrite (seq5 (same_relation_sym x))
| rewrite (fun a => seq5 (same_relation_sym (x a)))
| rewrite (fun a b => seq5 (same_relation_sym (x a b)))
| rewrite (fun a b c => seq5 (same_relation_sym (x a b c)))
| rewrite (fun a b c d => seq5 (same_relation_sym (x a b c d)))
| rewrite (fun a b c d e => seq5 (same_relation_sym (x a b c d e)))
| rewrite (fun a b c d e f => seq5 (same_relation_sym (x a b c d e f)))
| rewrite (seq6 (same_relation_sym x))
| rewrite (fun a => seq6 (same_relation_sym (x a)))
| rewrite (fun a b => seq6 (same_relation_sym (x a b)))
| rewrite (fun a b c => seq6 (same_relation_sym (x a b c)))
| rewrite (fun a b c d => seq6 (same_relation_sym (x a b c d)))
| rewrite (fun a b c d e => seq6 (same_relation_sym (x a b c d e)))
| rewrite (fun a b c d e f => seq6 (same_relation_sym (x a b c d e f)))
].
Tactic Notation "seq_rewrite" "!" uconstr(x) :=
seq_rewrite x; repeat seq_rewrite x.
Tactic Notation "seq_rewrite" "?" uconstr(x) :=
repeat seq_rewrite x.
Tactic Notation "seq_rewrite" "<-" "!" uconstr(x) :=
seq_rewrite <- x; repeat seq_rewrite <- x.
Tactic Notation "seq_rewrite" "<-" "?" uconstr(x) :=
repeat seq_rewrite <- x.
Tactic Notation "sin_rewrite" uconstr(x) :=
first [ rewrite x at 1
| rewrite (sin2 x) at 1
| rewrite (fun a => sin2 (x a)) at 1
| rewrite (fun a b => sin2 (x a b)) at 1
| rewrite (fun a b c => sin2 (x a b c)) at 1
| rewrite (fun a b c d => sin2 (x a b c d)) at 1
| rewrite (fun a b c d e => sin2 (x a b c d e)) at 1
| rewrite (fun a b c d e f => sin2 (x a b c d e f)) at 1
| rewrite (sin3 x) at 1
| rewrite (fun a => sin3 (x a)) at 1
| rewrite (fun a b => sin3 (x a b)) at 1
| rewrite (fun a b c => sin3 (x a b c)) at 1
| rewrite (fun a b c d => sin3 (x a b c d)) at 1
| rewrite (fun a b c d e => sin3 (x a b c d e)) at 1
| rewrite (fun a b c d e f => sin3 (x a b c d e f)) at 1
| rewrite (sin4 x) at 1
| rewrite (fun a => sin4 (x a)) at 1
| rewrite (fun a b => sin4 (x a b)) at 1
| rewrite (fun a b c => sin4 (x a b c)) at 1
| rewrite (fun a b c d => sin4 (x a b c d)) at 1
| rewrite (fun a b c d e => sin4 (x a b c d e)) at 1
| rewrite (fun a b c d e f => sin4 (x a b c d e f)) at 1
| rewrite (sin5 x) at 1
| rewrite (fun a => sin5 (x a)) at 1
| rewrite (fun a b => sin5 (x a b)) at 1
| rewrite (fun a b c => sin5 (x a b c)) at 1
| rewrite (fun a b c d => sin5 (x a b c d)) at 1
| rewrite (fun a b c d e => sin5 (x a b c d e)) at 1
| rewrite (fun a b c d e f => sin5 (x a b c d e f)) at 1
| rewrite (sin6 x) at 1
| rewrite (fun a => sin6 (x a)) at 1
| rewrite (fun a b => sin6 (x a b)) at 1
| rewrite (fun a b c => sin6 (x a b c)) at 1
| rewrite (fun a b c d => sin6 (x a b c d)) at 1
| rewrite (fun a b c d e => sin6 (x a b c d e)) at 1
| rewrite (fun a b c d e f => sin6 (x a b c d e f)) at 1
].
Tactic Notation "sin_rewrite" "!" uconstr(x) :=
sin_rewrite x; repeat sin_rewrite x.
Tactic Notation "sin_rewrite" "?" uconstr(x) :=
repeat sin_rewrite x.
Lemma rewrite_trans A (r: relation A) :
transitive r -> r ⨾ r ⊆ r.
Proof.
unfold inclusion, seq; ins; desf; eauto.
Qed.
Lemma rewrite_trans_seq_cr_l A (r: relation A) :
transitive r -> r^? ⨾ r ⊆ r.
Proof.
unfold inclusion, seq, clos_refl; ins; desf; eauto.
Qed.
Lemma rewrite_trans_seq_cr_r A (r: relation A) :
transitive r -> r ⨾ r^? ⊆ r.
Proof.
unfold inclusion, seq, clos_refl; ins; desf; eauto.
Qed.
Lemma rewrite_trans_seq_cr_cr A (r: relation A) :
transitive r -> r^? ⨾ r^? ⊆ r^?.
Proof.
unfold inclusion, seq, clos_refl; ins; desf; eauto.
Qed.
Lemma transitiveI A (r: relation A) :
inclusion (r ⨾ r) r <-> transitive r.
Proof.
red; splits; unfold transitive, inclusion, seq; ins; desf; eauto.
Qed.
Ltac simpl_rels :=
rewrite ?eqv_empty, ?seq_false_l, ?seq_false_r, ?seq_id_l, ?seq_id_r, ?seqA; seq_rewrite ? seq_eqvK.
Ltac rels :=
repeat first [progress autorewrite with hahn |
seq_rewrite seq_eqvK |
seq_rewrite ct_cr | seq_rewrite ct_rt |
seq_rewrite rt_cr | seq_rewrite rt_ct | seq_rewrite rt_rt |
seq_rewrite cr_ct | seq_rewrite cr_rt |
seq_rewrite <- ct_end | seq_rewrite <- ct_begin ];
try done; eauto 3 with hahn.
Ltac relsf :=
repeat first [progress autorewrite with hahn |
seq_rewrite seq_eqvK |
seq_rewrite ct_cr | seq_rewrite ct_rt |
seq_rewrite rt_cr | seq_rewrite rt_ct | seq_rewrite rt_rt |
seq_rewrite cr_ct | seq_rewrite cr_rt |
match goal with H: transitive _ |- _ =>
progress repeat first [rewrite (ct_of_trans H) |
rewrite (rt_of_trans H) |
sin_rewrite (rewrite_trans H) |
sin_rewrite (rewrite_trans_seq_cr_l H) |
sin_rewrite (rewrite_trans_seq_cr_r H) |
sin_rewrite (rewrite_trans_seq_cr_cr H) ] end |
progress autorewrite with hahn hahn_full ];
try done; eauto 3 with hahn.
Global Hint Resolve eq_in_l eq_in_r rt_rt ct_rt rt_ct cr_ct ct_cr cr_rt rt_cr ct_begin ct_end : hahn_full.
Global Hint Resolve inclusion_seq_eqv_r inclusion_seq_eqv_l clos_rt_idempotent inclusion_t_rt : hahn_full.
Global Hint Resolve inclusion_eqv_rel_true inclusion_minus_rel rewrite_trans : hahn_full.
Global Hint Resolve pow_rel_mori : hahn.
(** Helpful tactics for inclusions *)
Ltac apply_unionL_once :=
first [apply irreflexive_union; split |
apply inclusion_union_l | apply inclusion_bunion_l; intros |
apply set_subset_union_l; split | apply set_subset_bunion_l; intros].
Tactic Notation "unionL" := repeat apply_unionL_once.
Tactic Notation "unionR" tactic(dir) :=
first [apply inclusion_union_r | apply set_subset_union_r]; dir.
Tactic Notation "unionR" tactic(dir) "->" tactic(dir') :=
unionR dir; unionR dir'.
Tactic Notation "unionR" tactic(dir) "->" tactic(dir') "->" tactic(dir'') :=
unionR dir; unionR dir'; unionR dir''.
Tactic Notation "unionR" tactic(dir) "->" tactic(dir') "->" tactic(dir'') "->" tactic(dir''') :=
unionR dir; unionR dir'; unionR dir''; unionR dir'''.
Ltac hahn_rel :=
rels;
try match goal with |- (_ ≡ _) => split end;
unionL; eauto 8 with hahn.
Ltac hahn_frame_r :=
rewrite <- ?seqA; apply inclusion_seq_mon; [|reflexivity]; rewrite ?seqA.
Ltac hahn_frame_l :=
rewrite ?seqA; apply inclusion_seq_mon; [reflexivity|].
Ltac hahn_frame :=
rewrite <- ?seqA;
repeat (
match goal with
| |- inclusion _ (_ ⨾ clos_refl_trans _) => fail 1
| |- inclusion _ (_ ⨾ clos_trans _) => fail 1
| |- _ => apply inclusion_seq_mon; [|reflexivity]
end);
rewrite ?seqA;
repeat (
match goal with
| |- inclusion _ (clos_refl_trans _ ⨾ _) => fail 1
| |- inclusion _ (clos_trans _ ⨾ _) => fail 1
| |- _ => apply inclusion_seq_mon; [reflexivity|]
end);
try solve [ apply inclusion_seq_l; try done; auto with hahn
| apply inclusion_seq_r; try done; auto with hahn].
(** Rewrite with proof search *)
Tactic Notation "arewrite" uconstr(EQ) :=
let H := fresh in
first [assert (H: EQ) |
let typ1 := fresh in let binder1 := fresh in
evar (typ1 : Type); evar (binder1 : typ1);
first [assert (H: EQ binder1); subst binder1 typ1 |
let typ2 := fresh in let binder2 := fresh in
evar (typ2 : Type); evar (binder2 : typ2);
assert (H: EQ binder1 binder2); subst binder1 typ1 binder2 typ2]]; cycle 1;
[ first [seq_rewrite H|sin_rewrite H]; clear H; rewrite ?seqA
| eauto 4 with hahn hahn_full; try done ]; cycle 1.
Tactic Notation "arewrite" uconstr(EQ) "at" int_or_var(index) :=
let H := fresh in
assert (H : EQ); [eauto 4 with hahn hahn_full; try done|
rewrite H at index; clear H; rewrite ?seqA].
Tactic Notation "arewrite" uconstr(EQ) "by" tactic(t) :=
let H := fresh in
assert (H: EQ) by (by t; eauto with hahn hahn_full);
first [seq_rewrite H|sin_rewrite H]; clear H; rewrite ?seqA; try done.
Tactic Notation "arewrite" uconstr(EQ) "at" int_or_var(index) "by" tactic(t) :=
let H := fresh in
assert (H : EQ) by (by t; eauto with hahn hahn_full);
rewrite H at index; clear H; rewrite ?seqA; try done.
Tactic Notation "arewrite" "!" uconstr(EQ) :=
let H := fresh in
first [assert (H: EQ) |
let typ1 := fresh in let binder1 := fresh in
evar (typ1 : Type); evar (binder1 : typ1);
first [assert (H: EQ binder1); subst binder1 typ1 |
let typ2 := fresh in let binder2 := fresh in
evar (typ2 : Type); evar (binder2 : typ2);
assert (H: EQ binder1 binder2); subst binder1 typ1 binder2 typ2]]; cycle 1;
[ first [seq_rewrite !H|sin_rewrite !H]; clear H; rewrite ?seqA
| eauto 4 with hahn hahn_full; try done ]; cycle 1.
Tactic Notation "arewrite_false" constr(exp) :=
arewrite (exp ≡ fun _ _ => False); [split;[|vauto]|].
Tactic Notation "arewrite_false" "!" constr(exp) :=
arewrite !(exp ≡ fun _ _ => False); [split;[|vauto]|].
Tactic Notation "arewrite_false" constr(exp) "at" int_or_var(index) :=
arewrite (exp ≡ fun _ _ => False) at index; [split;[|vauto]|].
Tactic Notation "arewrite_id" constr(exp) :=
arewrite (exp ⊆ ⦗fun _ => True⦘).
Tactic Notation "arewrite_id" "!" constr(exp) :=
arewrite !(exp ⊆ ⦗fun _ => True⦘).
Tactic Notation "arewrite_id" constr(exp) "at" int_or_var(index) :=
arewrite (exp ⊆ ⦗fun _ => True⦘) at index.
(** Unfolding of relational operations **)
Tactic Notation "unfolder_prepare" :=
rewrite ?seqA;
repeat hahn_rewrite seq_eqv;
repeat hahn_seq_rewrite seq_eqv;
repeat hahn_rewrite seq_eqv_lr;
repeat hahn_rewrite seq_eqv_r;
repeat hahn_rewrite seq_eqv_l;
repeat hahn_rewrite <- id_union.
Tactic Notation "unfolder_prepare" "in" hyp(H) :=
rewrite ?seqA in H;
repeat hahn_rewrite seq_eqv in H;
repeat hahn_rewrite seq_eqv_lr in H;
repeat hahn_rewrite seq_eqv_r in H;
repeat hahn_rewrite seq_eqv_l in H;
repeat hahn_rewrite <- id_union in H.
Tactic Notation "unfolder" :=
unfolder_prepare; repeat autounfold with unfolderDb.
Tactic Notation "unfolder" "in" hyp(H) :=
unfolder_prepare in H; autounfold with unfolderDb in H.
Tactic Notation "unfolder" "in" "*" "|-" :=
repeat match goal with | [H:_ |- _] => progress unfolder in H
end.
Tactic Notation "unfolder" "in" "*" :=
unfolder; unfolder in * |-.
(** basic_solver tactic **)
Tactic Notation "basic_solver" int_or_var(index) :=
by ( rewrite ?rtE; unfolder; splits; ins; desf; eauto index; done).
Tactic Notation "basic_solver" :=
basic_solver 4.
(** Case analysis *)
Tactic Notation "case_union" uconstr(x) uconstr(y) :=
first [rewrite seq_union_l with (r1 := x) (r2 := y)
|rewrite seq_union_r with (r1 := x) (r2 := y)].
Tactic Notation "case_union_2" uconstr(x) uconstr(y) :=
simpl_rels;
(repeat(
case_union x y +
case_union x (y ⨾ _) +
case_union x (_ ⨾ y) +
case_union x (_ ⨾ y ⨾ _) +
case_union x (_ ⨾ _ ⨾ y) +
case_union x (_ ⨾ _ ⨾ y ⨾ _) +
case_union x (_ ⨾ _ ⨾ _ ⨾ y) +
case_union x (_ ⨾ _ ⨾ _ ⨾ y ⨾ _) +
case_union x (_ ⨾ _ ⨾ _ ⨾ _ ⨾ y) +
case_union x (_ ⨾ _ ⨾ _ ⨾ _ ⨾ y ⨾ _) +
case_union x (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ y) +
case_union x (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ y ⨾ _) +
case_union x (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ y) +
case_union x (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ y ⨾ _) +
case_union (x ⨾ _) y +
case_union (_ ⨾ x) y +
case_union (_ ⨾ x ⨾ _) y +
case_union (_ ⨾ _ ⨾ x) y +
case_union (_ ⨾ _ ⨾ x ⨾ _) y +
case_union (_ ⨾ _ ⨾ _ ⨾ x) y +
case_union (_ ⨾ _ ⨾ _ ⨾ x ⨾ _) y +
case_union (_ ⨾ _ ⨾ _ ⨾ _ ⨾ x) y +
case_union (_ ⨾ _ ⨾ _ ⨾ _ ⨾ x ⨾ _) y +
case_union (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ x) y +
case_union (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ x ⨾ _) y +
case_union (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ x) y +
case_union (_ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ _ ⨾ x ⨾ _) y
); unionL; [simpl_rels|]).
Tactic Notation "case_union_3" uconstr(x) uconstr(y) uconstr(z) :=
simpl_rels; case_union_2 _ z; [case_union_2 x y|].
Tactic Notation "case_union_4" uconstr(x) uconstr(y) uconstr(z) uconstr(w) :=
simpl_rels; case_union_2 _ w; [case_union_3 x y z|].
Tactic Notation "case_union_5" uconstr(x) uconstr(y) uconstr(z) uconstr(w) uconstr(t) :=
simpl_rels; case_union_2 _ t; [case_union_4 x y z w|].
Tactic Notation "case_refl" uconstr(x) "at" int(index) :=
simpl_rels; rewrite crE with (r := x) at index; case_union_2 _ x.
Tactic Notation "case_refl" uconstr(x) := case_refl x at 1.