forked from vafeiadis/hahn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHahnNatExtra.v
157 lines (129 loc) · 4.31 KB
/
HahnNatExtra.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
Require Import Arith micromega.Lia Setoid HahnBase.
Require Import PeanoNat.
Lemma div2_add_double n m :
Nat.div2 (2 * n + m) = n + Nat.div2 m.
Proof.
induction n; ins.
rewrite Nat.add_0_r in *.
rewrite (Nat.add_comm n); ins; f_equal; ins.
Qed.
Lemma add_eq_zero n m : n + m = 0 <-> n = 0 /\ m = 0.
Proof. lia. Qed.
(*****************************************************************************)
(** Sum of arithmetic series *)
(*****************************************************************************)
Definition arith_sum n := Nat.div2 (n * S n).
Lemma arith_sum_0 : arith_sum 0 = 0.
Proof. done. Qed.
Lemma arith_sum_S n : arith_sum (S n) = arith_sum n + S n.
Proof.
unfold arith_sum.
replace (S n * (S (S n))) with (2 * (S n) + n * (S n)).
rewrite div2_add_double; lia.
rewrite (Nat.mul_comm _ (S (S n))); simpl; lia.
Qed.
Lemma arith_sum_double n : arith_sum n * 2 = n * S n.
Proof.
induction n; try done.
rewrite arith_sum_S, (Nat.mul_comm _ (S (S n))); simpl; lia.
Qed.
Lemma arith_sum_le_mono n m (L : n <= m) : arith_sum n <= arith_sum m.
Proof.
apply Nat.sub_add in L; rewrite <- L; clear L.
generalize (m - n) as k; ins.
induction k; ins.
rewrite arith_sum_S; lia.
Qed.
Lemma arith_sum_lt n m (L : n < m) : arith_sum n + n < arith_sum m.
Proof.
apply Nat.sub_add in L; rewrite <- L; clear L.
generalize (m - S n) as k; intros.
replace (k + S n) with (S (n + k)) by lia.
rewrite arith_sum_S.
forward apply (arith_sum_le_mono n (n + k)); lia.
Qed.
Lemma arith_sum_lt_mono n m (L : n < m) : arith_sum n < arith_sum m.
Proof.
forward apply (arith_sum_lt n m); lia.
Qed.
Lemma arith_sum_inj n m (EQ: arith_sum n = arith_sum m) :
n = m.
Proof.
destruct (lt_eq_lt_dec n m) as [[A|A]|A]; desf; try lia.
all: apply arith_sum_lt in A; lia.
Qed.
Lemma arith_sum_inj_gen n n' (Ln: n' <= n) m m' (Lm: m' <= m)
(EQ: arith_sum n + n' = arith_sum m + m') :
n = m /\ n' = m'.
Proof.
destruct (lt_eq_lt_dec n m) as [[A|A]|A]; desf; try lia.
all: apply arith_sum_lt in A; lia.
Qed.
(** [find_max f n] returns the maximum number below [n] that satisfies [f]. *)
Fixpoint find_max (f: nat -> bool) (n : nat) :=
match n with
| 0 => 0
| S m => if f n then n else find_max f m
end.
Lemma find_max_sat (f : nat -> bool) n (F: f 0) : f (find_max f n).
Proof.
induction n; ins; desf.
Qed.
Lemma find_max_sat2 (f : nat -> bool) n (F: f 0) (G: f (S n) = false) :
f (find_max f n) /\ f (S (find_max f n)) = false.
Proof.
induction n; ins; desf; eauto.
Qed.
(** [invert_nat_fun f n] returns the maximum [x <= n] such that [f x <= n]. *)
Definition invert_nat_fun (f : nat -> nat) (y : nat) :=
find_max (fun x => f x <=? y) y.
Lemma invert_nat_fun_sat f y (F : f 0 <= y) :
f (invert_nat_fun f y) <= y.
Proof.
apply Nat.leb_le, find_max_sat with (f := fun x => f x <=? y) .
apply Nat.leb_le; done.
Qed.
Lemma invert_nat_fun_sat2 f y (F : f 0 <= y < f (S y)) :
f (invert_nat_fun f y) <= y < f (S (invert_nat_fun f y)).
Proof.
rewrite <- Nat.leb_le in *.
rewrite <- Nat.ltb_lt in *; desc.
rewrite Nat.ltb_antisym, Bool.negb_true_iff in *.
apply find_max_sat2 with (f := fun x => f x <=? y); ins.
Qed.
(*****************************************************************************)
(** Bijection between [Nat * Nat] and [Nat] *)
(*****************************************************************************)
Definition nat_tup (n1 n2 : nat) :=
arith_sum (n1 + n2) + n1.
Definition nat_fst (n : nat) : nat :=
let p := invert_nat_fun arith_sum n in
n - arith_sum p.
Definition nat_snd (n : nat) : nat :=
let p := invert_nat_fun arith_sum n in
p - (n - arith_sum p).
Lemma nat_tup_inj n1 n2 m1 m2
(EQ: nat_tup n1 n2 = nat_tup m1 m2) :
n1 = m1 /\ n2 = m2.
Proof.
eapply arith_sum_inj_gen in EQ; lia.
Qed.
Lemma nat_tup_eta n :
nat_tup (nat_fst n) (nat_snd n) = n.
Proof.
forward eapply invert_nat_fun_sat2
with (f := arith_sum) (y := n) as X.
rewrite arith_sum_0, arith_sum_S; ins; lia.
rewrite arith_sum_S in *; unfold nat_tup.
replace (nat_fst n + nat_snd n)
with (invert_nat_fun arith_sum n).
all: unfold nat_fst, nat_snd; lia.
Qed.
Lemma nat_fst_tup n m : nat_fst (nat_tup n m) = n.
Proof.
apply (nat_tup_inj _ _ _ _ (nat_tup_eta _)).
Qed.
Lemma nat_snd_tup n m : nat_snd (nat_tup n m) = m.
Proof.
apply (nat_tup_inj _ _ _ _ (nat_tup_eta _)).
Qed.