-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_impsampling_function.stan
45 lines (45 loc) · 1.86 KB
/
linear_impsampling_function.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
functions {
vector linear_impsampling_rng(int J_prime, int T_prime, int K, vector y_prime_bar, vector x_prime, vector mu_delta_p, matrix Sigma_delta_p, vector mu_delta_g, matrix Sigma_delta_g, int J_tilde, vector mu_a, real b, vector sigma_a, real sigma_y) {
vector[K+1] output;
vector[K] delta;
vector[T_prime] M_tilde;
matrix[T_prime,T_prime] Sigma_tilde;
real log_weight;
real log_dens_y_prime_bar;
real log_dens_delta_p;
real log_dens_delta_g;
delta <- multi_normal_rng(mu_delta_g, Sigma_delta_g);
{
vector[K] mu_a_tilde;
matrix[J_tilde,K] a_tilde;
matrix[J_tilde,T_prime] y_tilde;
matrix[J_tilde,T_prime] y_tilde_centered;
mu_a_tilde <- mu_a + delta;
for (j in 1:J_tilde){
for (k in 1:K)
a_tilde[j,k] <- normal_rng(mu_a_tilde[k], sigma_a[k]);
for (t in 1:T_prime)
y_tilde[j,t] <- a_tilde[j,1] + a_tilde[j,2]*x_prime[t] + b*x_prime[t]^2;
//y_tilde[j,t] <- normal_rng(a_tilde[j,1] + a_tilde[j,2]*x_prime[t] + b*x_prime[t]^2, sigma_y);
}
for (t in 1:T_prime){
M_tilde[t] <- mean(col(y_tilde, t));
for (j in 1:J_tilde)
y_tilde_centered[j,t] <- y_tilde[j,t] - M_tilde[t];
}
Sigma_tilde <- y_tilde_centered'*y_tilde_centered/(J_tilde-1);
//Sigma_tilde <- .5*(Sigma_tilde + Sigma_tilde');
Sigma_tilde <- .5*(Sigma_tilde + Sigma_tilde') + diag_matrix(rep_vector( square(sigma_y), T_prime));
}
log_dens_y_prime_bar <- multi_normal_log(y_prime_bar, M_tilde, Sigma_tilde/J_prime);
log_dens_delta_p <- multi_normal_log(delta, mu_delta_p, Sigma_delta_p);
log_dens_delta_g <- multi_normal_log(delta, mu_delta_g, Sigma_delta_g);
log_weight <- log_dens_y_prime_bar + log_dens_delta_p - log_dens_delta_g;
for (k in 1:K)
output[k] <- delta[k];
output[K+1] <- log_weight;
return output;
}
}
model {
}