-
Notifications
You must be signed in to change notification settings - Fork 626
/
Copy pathmetrics.py
308 lines (275 loc) · 13 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) 2024 Waymo LLC. All rights reserved.
# This is licensed under a BSD+Patent license.
# Please see LICENSE and PATENTS text files.
# ==============================================================================
"""Collection of metrics used to evaluate Sim Agents Challenge submissions."""
from typing import List
from google.protobuf import text_format
import numpy as np
import tensorflow as tf
# copybara removed file resource import
from waymo_open_dataset.protos import scenario_pb2
from waymo_open_dataset.protos import sim_agents_metrics_pb2
from waymo_open_dataset.protos import sim_agents_submission_pb2
from waymo_open_dataset.wdl_limited.sim_agents_metrics import estimators
from waymo_open_dataset.wdl_limited.sim_agents_metrics import metric_features
from waymo_open_dataset.wdl_limited.sim_agents_metrics import trajectory_features
_METRIC_FIELD_NAMES_BY_BUCKET = {
'kinematic': [
'linear_speed', 'linear_acceleration',
'angular_speed', 'angular_acceleration',
],
'interactive': [
'distance_to_nearest_object', 'collision_indication',
'time_to_collision',
],
'map_based': [
'distance_to_road_edge', 'offroad_indication'
]
}
_METRIC_FIELD_NAMES = (
_METRIC_FIELD_NAMES_BY_BUCKET['kinematic'] +
_METRIC_FIELD_NAMES_BY_BUCKET['interactive'] +
_METRIC_FIELD_NAMES_BY_BUCKET['map_based']
)
def load_metrics_config() -> sim_agents_metrics_pb2.SimAgentMetricsConfig:
"""Loads the `SimAgentMetricsConfig` used for the challenge."""
# pylint: disable=line-too-long
# pyformat: disable
config_path = '{pyglib_resource}waymo_open_dataset/wdl_limited/sim_agents_metrics/challenge_2024_config.textproto'.format(pyglib_resource='')
with open(config_path, 'r') as f:
config = sim_agents_metrics_pb2.SimAgentMetricsConfig()
text_format.Parse(f.read(), config)
return config
def compute_scenario_metrics_for_bundle(
config: sim_agents_metrics_pb2.SimAgentMetricsConfig,
scenario: scenario_pb2.Scenario,
scenario_rollouts: sim_agents_submission_pb2.ScenarioRollouts
) -> sim_agents_metrics_pb2.SimAgentMetrics:
"""Computes the scenario-level metrics for the given bundle."""
# Computes the metric features for log and sim.
log_features, sim_features = (
metric_features.compute_scenario_rollouts_features(
scenario, scenario_rollouts)
)
# ==== Average Displacement Error ====
# This metric is not included in the scoring meta-metric, but we report it
# to have a baseline comparison with existing Behaviour Prediction challenges.
# We report both ADE (averaged over simulations and objects) and minADE
# (averaged over objects, minimum over simulations).
average_displacement_error = tf.reduce_mean(
sim_features.average_displacement_error)
min_average_displacement_error = tf.reduce_min(
tf.reduce_mean(sim_features.average_displacement_error, axis=1))
# ==== Dynamics features ====
# Compute the log-likelihoods of speed features (first derivatives).
# Note: For log_values we take only index=0 of the batch dimension to have
# shape (n_objects, n_steps), as specified by
# `log_likelihood_estimate_timeseries()`.
linear_speed_log_likelihood = estimators.log_likelihood_estimate_timeseries(
feature_config=config.linear_speed,
log_values=log_features.linear_speed[0],
sim_values=sim_features.linear_speed)
angular_speed_log_likelihood = estimators.log_likelihood_estimate_timeseries(
feature_config=config.angular_speed,
log_values=log_features.angular_speed[0],
sim_values=sim_features.angular_speed)
# Get the log speed (linear and angular) validity. Since this is computed by
# a delta between steps `i-1` and `i+1`, we verify that both of these are
# valid (logical and).
speed_validity, acceleration_validity = (
trajectory_features.compute_kinematic_validity(log_features.valid[0])
)
# The score is computed as the sum of the log-likelihoods, filtered by
# validity. We exponentiate the result to get a score in the range [0,1].
linear_speed_likelihood = tf.exp(_reduce_average_with_validity(
linear_speed_log_likelihood, speed_validity))
angular_speed_likelihood = tf.exp(_reduce_average_with_validity(
angular_speed_log_likelihood, speed_validity))
# Similarly, we compute likelihoods for acceleration features. This time,
# we have to compute a double-step validity mask, because accelerations
# involve the validity of `i`, `i+1`, `i+2`.
linear_accel_log_likelihood = estimators.log_likelihood_estimate_timeseries(
feature_config=config.linear_acceleration,
log_values=log_features.linear_acceleration[0],
sim_values=sim_features.linear_acceleration)
angular_accel_log_likelihood = estimators.log_likelihood_estimate_timeseries(
feature_config=config.angular_acceleration,
log_values=log_features.angular_acceleration[0],
sim_values=sim_features.angular_acceleration)
linear_accel_likelihood = tf.exp(_reduce_average_with_validity(
linear_accel_log_likelihood, acceleration_validity))
angular_accel_likelihood = tf.exp(_reduce_average_with_validity(
angular_accel_log_likelihood, acceleration_validity))
# Collision likelihood is computed by aggregating in time. For invalid objects
# in the logged scenario, we need to filter possible collisions in simulation.
# `sim_collision_indication` shape: (n_samples, n_objects).
sim_collision_indication = tf.reduce_any(
tf.where(log_features.valid, sim_features.collision_per_step, False),
axis=2)
log_collision_indication = tf.reduce_any(
tf.where(log_features.valid, log_features.collision_per_step, False),
axis=2)
# Collision and distance to other objects. Again, aggregate over objects and
# timesteps by summing the log-probabilities.
collision_score = estimators.log_likelihood_estimate_scenario_level(
feature_config=config.collision_indication,
log_values=log_collision_indication[0],
sim_values=sim_collision_indication
)
collision_likelihood = tf.exp(tf.reduce_mean(collision_score))
distance_to_objects_log_likelihood = (
estimators.log_likelihood_estimate_timeseries(
feature_config=config.distance_to_nearest_object,
log_values=log_features.distance_to_nearest_object[0],
sim_values=sim_features.distance_to_nearest_object,
)
)
distance_to_obj_likelihood = tf.exp(
_reduce_average_with_validity(
distance_to_objects_log_likelihood, log_features.valid[0]
)
)
ttc_log_likelihood = estimators.log_likelihood_estimate_timeseries(
feature_config=config.time_to_collision,
log_values=log_features.time_to_collision[0],
sim_values=sim_features.time_to_collision,
)
ttc_likelihood = tf.exp(
_reduce_average_with_validity(ttc_log_likelihood, log_features.valid[0])
)
# Off-road and distance to road edge. Again, aggregate over objects and
# timesteps by summing the log-probabilities.
# `sim_offroad_indication` shape: (n_samples, n_objects).
sim_offroad_indication = tf.reduce_any(
tf.where(log_features.valid, sim_features.offroad_per_step, False),
axis=2)
log_offroad_indication = tf.reduce_any(
tf.where(log_features.valid, log_features.offroad_per_step, False),
axis=2)
offroad_score = estimators.log_likelihood_estimate_scenario_level(
feature_config=config.offroad_indication,
log_values=log_offroad_indication[0],
sim_values=sim_offroad_indication,
)
offroad_likelihood = tf.exp(tf.reduce_mean(offroad_score))
# `distance_to_road_edge_log_likelihood` shape: (n_objects, n_steps).
distance_to_road_edge_log_likelihood = (
estimators.log_likelihood_estimate_timeseries(
feature_config=config.distance_to_road_edge,
log_values=log_features.distance_to_road_edge[0],
sim_values=sim_features.distance_to_road_edge,
)
)
distance_to_road_edge_likelihood = tf.exp(
_reduce_average_with_validity(
distance_to_road_edge_log_likelihood, log_features.valid[0]
)
)
# ==== Simulated collision and offroad rates ====
simulated_collision_rate = tf.reduce_sum(
# `sim_collision_indication` shape: (n_samples, n_objects).
tf.cast(sim_collision_indication, tf.int32)
) / tf.reduce_sum(tf.ones_like(sim_collision_indication, dtype=tf.int32))
simulated_offroad_rate = tf.reduce_sum(
# `sim_offroad_indication` shape: (n_samples, n_objects).
tf.cast(sim_offroad_indication, tf.int32)
) / tf.reduce_sum(tf.ones_like(sim_offroad_indication, dtype=tf.int32))
# ==== Meta-metric ====
likelihood_metrics = {
'linear_speed_likelihood': linear_speed_likelihood.numpy(),
'linear_acceleration_likelihood': linear_accel_likelihood.numpy(),
'angular_speed_likelihood': angular_speed_likelihood.numpy(),
'angular_acceleration_likelihood': angular_accel_likelihood.numpy(),
'distance_to_nearest_object_likelihood': (
distance_to_obj_likelihood.numpy()
),
'collision_indication_likelihood': collision_likelihood.numpy(),
'time_to_collision_likelihood': ttc_likelihood.numpy(),
'distance_to_road_edge_likelihood': (
distance_to_road_edge_likelihood.numpy()
),
'offroad_indication_likelihood': offroad_likelihood.numpy(),
}
metametric = _compute_metametric(
config, sim_agents_metrics_pb2.SimAgentMetrics(**likelihood_metrics))
return sim_agents_metrics_pb2.SimAgentMetrics(
scenario_id=scenario.scenario_id,
metametric=metametric,
average_displacement_error=average_displacement_error,
min_average_displacement_error=min_average_displacement_error,
simulated_collision_rate=simulated_collision_rate.numpy(),
simulated_offroad_rate=simulated_offroad_rate.numpy(),
**likelihood_metrics,
)
def aggregate_scenario_metrics(
all_scenario_metrics: List[sim_agents_metrics_pb2.SimAgentMetrics]
) -> sim_agents_metrics_pb2.SimAgentMetrics:
"""Aggregates the per-scenario metrics over the whole dataset."""
msg_fields = [field[0].name for field in all_scenario_metrics[0].ListFields()]
field_values = {field_name: [] for field_name in msg_fields}
for scenario_metrics in all_scenario_metrics:
for field_name in msg_fields:
field_values[field_name].append(getattr(scenario_metrics, field_name))
# Remove the scenario ID field.
del field_values['scenario_id']
# Average all the fields.
field_values = {
name: np.mean(values) for (name, values) in field_values.items()}
return sim_agents_metrics_pb2.SimAgentMetrics(
**field_values)
def aggregate_metrics_to_buckets(
config: sim_agents_metrics_pb2.SimAgentMetricsConfig,
metrics: sim_agents_metrics_pb2.SimAgentMetrics
) -> sim_agents_metrics_pb2.SimAgentsBucketedMetrics:
"""Aggregates metrics into buckets for better readability."""
bucketed_metrics = {}
for bucket_name, fields_in_bucket in _METRIC_FIELD_NAMES_BY_BUCKET.items():
weighted_metric, weights_sum = 0.0, 0.0
for field_name in fields_in_bucket:
likelihood_field_name = field_name + '_likelihood'
weight = getattr(config, field_name).metametric_weight
metric_score = getattr(metrics, likelihood_field_name)
weighted_metric += weight * metric_score
weights_sum += weight
if weights_sum == 0:
raise ValueError('The bucket\'s weight sum is zero. Check your metrics'
' config.')
bucketed_metrics[bucket_name] = weighted_metric / weights_sum
return sim_agents_metrics_pb2.SimAgentsBucketedMetrics(
realism_meta_metric=metrics.metametric,
kinematic_metrics=bucketed_metrics['kinematic'],
interactive_metrics=bucketed_metrics['interactive'],
map_based_metrics=bucketed_metrics['map_based'],
min_ade=metrics.min_average_displacement_error,
simulated_collision_rate=metrics.simulated_collision_rate,
simulated_offroad_rate=metrics.simulated_offroad_rate,
)
def _reduce_average_with_validity(
tensor: tf.Tensor, validity: tf.Tensor) -> tf.Tensor:
"""Returns the tensor's average, only selecting valid items.
Args:
tensor: A float tensor of any shape.
validity: A boolean tensor of the same shape as `tensor`.
Returns:
A float tensor of shape (1,), containing the average of the valid elements
of `tensor`.
"""
if tensor.shape != validity.shape:
raise ValueError('Shapes of `tensor` and `validity` must be the same.'
f'(Actual: {tensor.shape}, {validity.shape}).')
cond_sum = tf.reduce_sum(tf.where(validity, tensor, tf.zeros_like(tensor)))
valid_sum = tf.reduce_sum(tf.cast(validity, tf.float32))
return cond_sum / valid_sum
def _compute_metametric(
config: sim_agents_metrics_pb2.SimAgentMetricsConfig,
metrics: sim_agents_metrics_pb2.SimAgentMetrics,
):
"""Computes the meta-metric aggregation."""
metametric = 0.0
for field_name in _METRIC_FIELD_NAMES:
likelihood_field_name = field_name + '_likelihood'
weight = getattr(config, field_name).metametric_weight
metric_score = getattr(metrics, likelihood_field_name)
metametric += weight * metric_score
return metametric