This repository has been archived by the owner on Jan 29, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathfacedetect
executable file
·287 lines (224 loc) · 8.89 KB
/
facedetect
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python3
# facedetect: a simple face detector for batch processing
# Copyright(c) 2013-2017 by wave++ "Yuri D'Elia" <[email protected]>
# Distributed under GPLv2+ (see COPYING) WITHOUT ANY WARRANTY.
from __future__ import print_function, division, generators, unicode_literals
import argparse
import numpy as np
import cv2
import math
import sys
import os
# CV compatibility stubs
if 'IMREAD_GRAYSCALE' not in dir(cv2):
# <2.4
cv2.IMREAD_GRAYSCALE = 0
if 'cv' in dir(cv2):
# <3.0
cv2.CASCADE_DO_CANNY_PRUNING = cv2.cv.CV_HAAR_DO_CANNY_PRUNING
cv2.CASCADE_FIND_BIGGEST_OBJECT = cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT
cv2.FONT_HERSHEY_SIMPLEX = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5, 0, 1, cv2.cv.CV_AA)
cv2.LINE_AA = cv2.cv.CV_AA
def getTextSize(buf, font, scale, thickness):
return cv2.cv.GetTextSize(buf, font)
def putText(im, line, pos, font, scale, color, thickness, lineType):
return cv2.cv.PutText(cv2.cv.fromarray(im), line, pos, font, color)
cv2.getTextSize = getTextSize
cv2.putText = putText
# Profiles
DATA_DIR = '/usr/share/opencv/'
CASCADES = {}
PROFILES = {
'HAAR_FRONTALFACE_ALT2': 'haarcascades/haarcascade_frontalface_alt2.xml',
}
# Face normalization
NORM_SIZE = 100
NORM_MARGIN = 10
# Support functions
def error(msg):
sys.stderr.write("{}: error: {}\n".format(os.path.basename(sys.argv[0]), msg))
def fatal(msg):
error(msg)
sys.exit(1)
def load_cascades(data_dir):
for k, v in PROFILES.items():
v = os.path.join(data_dir, v)
try:
if not os.path.exists(v):
raise cv2.error('no such file')
CASCADES[k] = cv2.CascadeClassifier(v)
except cv2.error:
fatal("cannot load {} from {}".format(k, v))
def crop_rect(im, rect, shave=0):
return im[rect[1]+shave:rect[1]+rect[3]-shave,
rect[0]+shave:rect[0]+rect[2]-shave]
def shave_margin(im, margin):
return im[margin:-margin, margin:-margin]
def norm_rect(im, rect, equalize=True, same_aspect=False):
roi = crop_rect(im, rect)
if equalize:
roi = cv2.equalizeHist(roi)
side = NORM_SIZE + NORM_MARGIN
if same_aspect:
scale = side / max(rect[2], rect[3])
dsize = (int(rect[2] * scale), int(rect[3] * scale))
else:
dsize = (side, side)
roi = cv2.resize(roi, dsize, interpolation=cv2.INTER_CUBIC)
return shave_margin(roi, NORM_MARGIN)
def rank(im, rects):
scores = []
best = None
for i in range(len(rects)):
rect = rects[i]
roi_n = norm_rect(im, rect, equalize=False, same_aspect=True)
roi_l = cv2.Laplacian(roi_n, cv2.CV_8U)
e = np.sum(roi_l) / (roi_n.shape[0] * roi_n.shape[1])
dx = im.shape[1] / 2 - rect[0] + rect[2] / 2
dy = im.shape[0] / 2 - rect[1] + rect[3] / 2
d = math.sqrt(dx ** 2 + dy ** 2) / (max(im.shape) / 2)
s = (rect[2] + rect[3]) / 2
scores.append({'s': s, 'e': e, 'd': d})
sMax = max([x['s'] for x in scores])
eMax = max([x['e'] for x in scores])
for i in range(len(scores)):
s = scores[i]
sN = s['sN'] = s['s'] / sMax
eN = s['eN'] = s['e'] / eMax
f = s['f'] = eN * 0.7 + (1 - s['d']) * 0.1 + sN * 0.2
ranks = range(len(scores))
ranks = sorted(ranks, reverse=True, key=lambda x: scores[x]['f'])
for i in range(len(scores)):
scores[ranks[i]]['RANK'] = i
return scores, ranks[0]
def mssim_norm(X, Y, K1=0.01, K2=0.03, win_size=11, sigma=1.5):
C1 = K1 ** 2
C2 = K2 ** 2
cov_norm = win_size ** 2
ux = cv2.GaussianBlur(X, (win_size, win_size), sigma)
uy = cv2.GaussianBlur(Y, (win_size, win_size), sigma)
uxx = cv2.GaussianBlur(X * X, (win_size, win_size), sigma)
uyy = cv2.GaussianBlur(Y * Y, (win_size, win_size), sigma)
uxy = cv2.GaussianBlur(X * Y, (win_size, win_size), sigma)
vx = cov_norm * (uxx - ux * ux)
vy = cov_norm * (uyy - uy * uy)
vxy = cov_norm * (uxy - ux * uy)
A1 = 2 * ux * uy + C1
A2 = 2 * vxy + C2
B1 = ux ** 2 + uy ** 2 + C1
B2 = vx + vy + C2
D = B1 * B2
S = (A1 * A2) / D
return np.mean(shave_margin(S, (win_size - 1) // 2))
def face_detect(im, biggest=False):
side = math.sqrt(im.size)
minlen = int(side / 20)
maxlen = int(side / 2)
flags = cv2.CASCADE_DO_CANNY_PRUNING
# optimize queries when possible
if biggest:
flags |= cv2.CASCADE_FIND_BIGGEST_OBJECT
# frontal faces
cc = CASCADES['HAAR_FRONTALFACE_ALT2']
features = cc.detectMultiScale(im, 1.1, 4, flags, (minlen, minlen), (maxlen, maxlen))
return features
def face_detect_file(path, biggest=False):
im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
if im is None:
fatal("cannot load input image {}".format(path))
im = cv2.equalizeHist(im)
features = face_detect(im, biggest)
return im, features
def pairwise_similarity(im, features, template, **mssim_args):
template = np.float32(template) / 255
for rect in features:
roi = norm_rect(im, rect)
roi = np.float32(roi) / 255
yield mssim_norm(roi, template, **mssim_args)
def __main__():
ap = argparse.ArgumentParser(description='A simple face detector for batch processing')
ap.add_argument('--biggest', action="store_true",
help='Extract only the biggest face')
ap.add_argument('--best', action="store_true",
help='Extract only the best matching face')
ap.add_argument('-c', '--center', action="store_true",
help='Print only the center coordinates')
ap.add_argument('--data-dir', metavar='DIRECTORY', default=DATA_DIR,
help='OpenCV data files directory')
ap.add_argument('-q', '--query', action="store_true",
help='Query only (exit 0: face detected, 2: no detection)')
ap.add_argument('-s', '--search', metavar='FILE',
help='Search for faces similar to the one supplied in FILE')
ap.add_argument('--search-threshold', metavar='PERCENT', type=int, default=30,
help='Face similarity threshold (default: 30%%)')
ap.add_argument('-o', '--output', help='Image output file')
ap.add_argument('-d', '--debug', action="store_true",
help='Add debugging metrics in the image output file')
ap.add_argument('file', help='Input image file')
args = ap.parse_args()
load_cascades(args.data_dir)
# detect faces in input image
im, features = face_detect_file(args.file, args.query or args.biggest)
# match against the requested face
sim_scores = None
if args.search:
s_im, s_features = face_detect_file(args.search, True)
if len(s_features) == 0:
fatal("cannot detect face in template")
sim_scores = []
sim_features = []
sim_threshold = args.search_threshold / 100
sim_template = norm_rect(s_im, s_features[0])
for i, score in enumerate(pairwise_similarity(im, features, sim_template)):
if score >= sim_threshold:
sim_scores.append(score)
sim_features.append(features[i])
features = sim_features
# exit early if possible
if args.query:
return 0 if len(features) else 2
# compute scores
scores = []
best = None
if len(features) and (args.debug or args.best or args.biggest or sim_scores):
scores, best = rank(im, features)
if sim_scores:
for i in range(len(features)):
scores[i]['MSSIM'] = sim_scores[i]
# debug features
if args.output:
im = cv2.imread(args.file)
font = cv2.FONT_HERSHEY_SIMPLEX
fontHeight = cv2.getTextSize("", font, 0.5, 1)[0][1] + 5
for i in range(len(features)):
if best is not None and i != best and not args.debug:
next
rect = features[i]
fg = (0, 255, 255) if i == best else (255, 255, 255)
xy1 = (rect[0], rect[1])
xy2 = (rect[0] + rect[2], rect[1] + rect[3])
cv2.rectangle(im, xy1, xy2, (0, 0, 0), 4)
cv2.rectangle(im, xy1, xy2, fg, 2)
if args.debug:
lines = []
for k, v in scores[i].items():
lines.append("{}: {}".format(k, v))
h = rect[1] + rect[3] + fontHeight
for line in lines:
cv2.putText(im, line, (rect[0], h), font, 0.5, fg, 1, cv2.LINE_AA)
h += fontHeight
cv2.imwrite(args.output, im)
# output
if (args.best or args.biggest) and best is not None:
features = [features[best]]
if args.center:
for rect in features:
x = int(rect[0] + rect[2] / 2)
y = int(rect[1] + rect[3] / 2)
print("{} {}".format(x, y))
else:
for rect in features:
print("{} {} {} {}".format(*rect))
return 0
if __name__ == '__main__':
sys.exit(__main__())