forked from xlang-ai/instructor-embedding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
577 lines (529 loc) · 22.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# This script is based on the modification from https://github.com/huggingface/transformers
import logging
import os
import torch
import random
import sys
import json
from dataclasses import dataclass, field
from typing import Optional
import datasets
import nltk # Here to have a nice missing dependency error message early on
import transformers
from filelock import FileLock
from InstructorEmbedding import INSTRUCTOR
from transformers import (
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
MBart50Tokenizer,
MBart50TokenizerFast,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, is_offline_mode
from torch.utils.data import Dataset, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from transformers.utils.versions import require_version
from datasets import Dataset,DatasetDict
check_min_version("4.20.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]
def has_length(dataset):
"""
Checks if the dataset implements __len__() and it doesn't raise an error
"""
try:
return len(dataset) is not None
except TypeError:
# TypeError: len() of unsized object
return False
class InstructorTrainer(Seq2SeqTrainer):
def _get_train_sampler(self) :
if self.train_dataset is None or not has_length(self.train_dataset):
return None
generator = None
if self.args.world_size <= 1:
generator = torch.Generator()
# for backwards compatibility, we generate a seed here (which is sampled from a generator seeded with
# `args.seed`) if data_seed isn't provided.
# Further on in this method, we default to `args.seed` instead.
if self.args.data_seed is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
else:
seed = self.args.data_seed
generator.manual_seed(seed)
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
if self.args.world_size <= 1:
return SequentialSampler(self.train_dataset)
else:
return DistributedSampler(
self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
)
def compute_loss(self, model, inputs, return_outputs=False):
for task_id in inputs['task_name']:
assert task_id==inputs['task_name'][0],f"Examples in the same batch should come from the same task, " \
f"but task {task_id} and task {inputs['task_name'][0]} are found"
cur_results = {}
for k in ['query', 'pos', 'neg']:
cur_inputs = {
'input_ids': inputs[f'{k}_input_ids'],
'attention_mask': inputs[f'{k}_attention_mask'],
'context_masks': inputs[f'{k}_context_masks'],
}
cur_results[k] = model(cur_inputs)['sentence_embedding']
embeddings_query = cur_results['query']
embeddings_pos = cur_results['pos']
embeddings_neg = cur_results['neg']
num = len(embeddings_query)
all_scores = None
from torch import nn
similarity_fct = nn.CosineSimilarity(dim=-1)
for i in range(0, num):
anchor_emb = embeddings_query[i].unsqueeze(0)
pos_emb = embeddings_pos[i].unsqueeze(0)
cur_score = similarity_fct(anchor_emb, pos_emb) / self.args.cl_temperature
for j in range(0, num):
one_neg_emb = embeddings_neg[j].unsqueeze(0)
one_neg_score = similarity_fct(anchor_emb, one_neg_emb) / self.args.cl_temperature
cur_score = torch.cat([cur_score, one_neg_score], dim=-1)
if all_scores is None:
all_scores = cur_score.unsqueeze(0)
else:
all_scores = torch.cat([all_scores, cur_score.unsqueeze(0)], dim=0)
labels = torch.zeros(all_scores.size(0)).long().to(embeddings_query.device)
loss = nn.CrossEntropyLoss()(all_scores, labels)
all_another_scores = None
for i in range(0, num):
anchor_emb = embeddings_pos[i].unsqueeze(0)
pos_emb = embeddings_query[i].unsqueeze(0)
cur_score = similarity_fct(anchor_emb, pos_emb) / self.args.cl_temperature
for j in range(0, num):
if i == j:
continue
one_neg_emb = embeddings_query[j].unsqueeze(0)
one_neg_score = similarity_fct(anchor_emb, one_neg_emb) / self.args.cl_temperature
cur_score = torch.cat([cur_score, one_neg_score], dim=-1)
if all_another_scores is None:
all_another_scores = cur_score.unsqueeze(0)
else:
all_another_scores = torch.cat([all_another_scores, cur_score.unsqueeze(0)], dim=0)
labels_another = torch.zeros(all_another_scores.size(0)).long().to(embeddings_query.device)
loss += nn.CrossEntropyLoss()(all_another_scores, labels_another)
return loss
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
)
},
)
resize_position_embeddings: Optional[bool] = field(
default=None,
metadata={
"help": (
"Whether to automatically resize the position embeddings if `max_source_length` exceeds "
"the model's position embeddings."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
lang: str = field(default=None, metadata={"help": "Language id for summarization."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
processed_data_dir: Optional[str] = field(
default=None, metadata={"help": "directory to the processed data"}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
sample_selection_train_file_path: Optional[str] = field(
default=None, metadata={"help": "sample_selection_train_file_path"}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def_only: bool = field(
default=False, metadata={"help": "def_only"}
)
add_prompt_to_document: bool = field(
default=True, metadata={"help": "add_prompt_to_document"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
debug_mode: Optional[int] = field(
default=None,
metadata={"help": "debug mode"},
)
max_examples: Optional[int] = field(
default=None,
metadata={"help": "debug mode"},
)
cl_temperature: Optional[float] = field(
default=None,
metadata={"help": "temperature"},
)
max_source_length: Optional[int] = field(
default=512,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
sub_sample_ratio: Optional[float] = field(
default=2.0,
metadata={
"help": (
"sub_sample_ratio"
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the decoder_start_token_id."
"Useful for multilingual models like mBART where the first generated token"
"needs to be the target language token (Usually it is the target language token)"
)
},
)
def __post_init__(self):
pass
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
}
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
data_args.output_dir = training_args.output_dir
real_name_or_path = model_args.model_name_or_path
data_args.model_name_or_path = model_args.model_name_or_path
data_args.tokenizer_name_or_path = model_args.model_name_or_path
training_args.cl_temperature = data_args.cl_temperature
training_args.remove_unused_columns = False
if not os.path.isdir(data_args.output_dir):
os.makedirs(data_args.output_dir,exist_ok=True)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = logging.ERROR
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
set_seed(training_args.seed)
with open(os.path.join(model_args.cache_dir, 'medi-data.json')) as f:
train_examples_raw = json.load(f)
if data_args.debug_mode:
train_examples_raw = train_examples_raw[:data_args.debug_mode]
old_train_examples_raw = train_examples_raw
train_examples_raw = []
total_n = len(old_train_examples_raw)
real_batch_size = max(training_args.per_device_train_batch_size,
training_args.per_device_train_batch_size * torch.cuda.device_count())
# print('real_batch_size: ', real_batch_size,training_args.per_device_train_batch_size,torch.cuda.device_count())
for idx in range(0, total_n, real_batch_size):
local_task_name = old_train_examples_raw[idx]['task_name']
cur_batch = []
include_batch = True
for idx1 in range(idx, min(idx + real_batch_size, total_n)):
if not old_train_examples_raw[idx1]['task_name'] == local_task_name:
print(f'one batch in task {old_train_examples_raw[idx1]["task_name"]} is skipped')
include_batch = False
break
else:
cur_batch.append(old_train_examples_raw[idx1])
if include_batch and len(cur_batch) == real_batch_size:
train_examples_raw.append(cur_batch)
random.shuffle(train_examples_raw)
if data_args.max_examples is not None and len(train_examples_raw*real_batch_size)>data_args.max_examples:
train_examples_raw = train_examples_raw[:int(data_args.max_examples/real_batch_size)]
train_examples_raw_batch = train_examples_raw
train_examples_raw = []
for b in train_examples_raw_batch:
train_examples_raw += b
print(f'There are {len(train_examples_raw)} pairs to train in total')
if data_args.debug_mode:
train_examples_raw = train_examples_raw[:int(data_args.debug_mode)]
train_examples = {'query':[],'pos':[],'neg':[],'task_name':[]}
task_name_map = {}
total_train_num = len(train_examples_raw)
task_count = 0
for i in range(total_train_num):
cur_e = train_examples_raw[i]
for k in ['query','pos','neg']:
for s in cur_e[k][:-1]:
assert not '!@#$%^&**!@#$%^&**' in s
cur_e[k][-1] = str(cur_e[k][-1])
if not data_args.add_prompt_to_document:
cur_e[k][0] = ''
assert cur_e[k][0].startswith('Represent ') or cur_e[k][0]==''
train_examples[k].append('!@#$%^&**!@#$%^&**'.join(cur_e[k]))
if not cur_e['task_name'] in task_name_map:
task_name_map[cur_e['task_name']] = task_count
task_count += 1
train_examples['task_name'].append(task_name_map[cur_e['task_name']])
raw_datasets = DatasetDict({'train':Dataset.from_dict(train_examples)})
model = INSTRUCTOR(real_name_or_path, cache_folder=model_args.cache_dir)
column_names = raw_datasets["train"].column_names
def preprocess_function(examples):
all_tokenized = None
for key in ['query','pos','neg']:
num = len(examples[key])
contexts = []
concatenated_input_texts = []
for local_idx in range(num):
splits = examples[key][local_idx].split('!@#$%^&**!@#$%^&**')
assert len(splits) == 2
contexts.append(splits[0])
concatenated_input_texts.append(''.join(splits))
assert isinstance(contexts[-1], str)
assert isinstance(concatenated_input_texts[-1], str)
tokenized = tokenizer(concatenated_input_texts,padding='max_length', truncation='longest_first', return_tensors="pt", max_length=data_args.max_source_length)
context_tok = tokenizer(contexts,padding='max_length', truncation='longest_first', return_tensors="pt", max_length=data_args.max_source_length)
tokenized['context_masks'] = torch.sum(context_tok['attention_mask'], dim=1)
tokenized['context_masks'] = tokenized['context_masks'] - 1
for my_idx in range(len(tokenized['context_masks'])):
if tokenized['context_masks'][my_idx] <= 1:
tokenized['context_masks'][my_idx] = 0
keys = tokenized.keys()
if all_tokenized is None:
all_tokenized = tokenized.copy()
for k in keys:
all_tokenized[k] = all_tokenized[k].tolist()
for k in keys:
all_tokenized[f'{key}_{k}'] = tokenized[k].tolist()
all_tokenized['task_name'] = examples['task_name']
return all_tokenized
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
trainer = InstructorTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=None,
)
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
def _mp_fn(index):
main()
if __name__ == "__main__":
main()