-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrajectory_loss.py
62 lines (46 loc) · 2.02 KB
/
trajectory_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
def trajLoss(target_traj, traj, diff_traj=None, x_w=None, u_w=None):
# target trajectory
target_u_traj = target_traj['u_traj']
target_x_traj = target_traj['x_traj']
# variable trajectory
u_traj = traj['u_opt_traj']
x_traj = traj['x_opt_traj']
if x_w is not None:
x_w = np.diag(x_w)
else:
x_w = np.diag(1. / ((target_x_traj * target_x_traj).mean(axis=0)+0.0001))
if u_w is not None:
u_w = np.diag(u_w)
else:
u_w = np.diag(1. / ((target_u_traj * target_u_traj).mean(axis=0)+0.0001))
if diff_traj is not None:
# gradient of trajectory
jac_x2aux_traj = diff_traj['jac_x2aux_traj']
jac_u2aux_traj = diff_traj['jac_u2aux_traj']
# compute the loss
horizon = u_traj.shape[0]
loss = 0.0
if diff_traj is not None:
loss_grad = np.zeros(jac_x2aux_traj.shape[-1])
for t in range(horizon):
# ----------debug: another choice of weights (this seems not good)
# u_w = np.diag(1. / (target_u_traj[t] * target_u_traj[t] + 0.00001))
# x_w = np.diag(1. / (target_x_traj[t] * target_x_traj[t] + 0.00001))
# compute the loss
loss += np.dot(target_u_traj[t] - u_traj[t], u_w @ (target_u_traj[t] - u_traj[t]))
loss += np.dot(target_x_traj[t] - x_traj[t], x_w @ (target_x_traj[t] - x_traj[t]))
if diff_traj is not None:
# compute the gradient
loss_grad += u_w @ (u_traj[t] - target_u_traj[t]) @ jac_u2aux_traj[t]
loss_grad += x_w @ (x_traj[t] - target_x_traj[t]) @ jac_x2aux_traj[t]
# ----------debug: another choice of weights
# x_w = np.diag(1. / (0.00001 + target_x_traj[-1] * target_x_traj[-1]))
# the final loss
loss += np.dot(target_x_traj[-1] - x_traj[-1], x_w @ (target_x_traj[-1] - x_traj[-1]))
if diff_traj is not None:
loss_grad += x_w @ (x_traj[-1] - target_x_traj[-1]) @ jac_x2aux_traj[-1]
loss_grad = loss_grad.flatten()
else:
loss_grad = None
return loss, loss_grad