-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathautoencoder.py
63 lines (48 loc) · 1.68 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
# coding: utf-8
"""
Module containing the realization of all the models that are to be used un t
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
class Autoencoder(nn.Module):
"""
The class defines the autoencoder model which takes in the features from the last convolutional layer of the
Alexnet model. The default value for the input_dims is 256*13*13.
"""
def __init__(self, input_dims = 256*13*13, code_dims = 100):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dims, code_dims),
nn.ReLU())
self.decoder = nn.Sequential(
nn.Linear(code_dims, input_dims),
nn.Sigmoid())
def forward(self, x):
encoded_x = self.encoder(x)
reconstructed_x = self.decoder(encoded_x)
return reconstructed_x
class Alexnet_FE(nn.Module):
"""
Create a feature extractor model from an Alexnet architecture, that is used to train the autoencoder model
and get the most related model whilst training a new task in a sequence
"""
def __init__(self, alexnet_model):
super(Alexnet_FE, self).__init__()
self.fe_model = nn.Sequential(*list(alexnet_model.children())[0][:-2])
self.fe_model.train = False
def forward(self, x):
return self.fe_model(x)
class GeneralModelClass(nn.Module):
"""
Define the model replacing the last linear layer with a linear layer with the required amount of classes
for the new task.
"""
def __init__(self, classes):
super(GeneralModelClass, self).__init__()
self.Tmodel = models.alexnet(pretrained = True)
self.Tmodel.classifier[-1] = nn.Linear(self.Tmodel.classifier[-1].in_features, classes)
def forward(self, x):
return self.Tmodel(x)