-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeo.py
executable file
·343 lines (245 loc) · 13.2 KB
/
geo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import numpy as np
from numpy import linalg as LA
from numpy import sqrt, sin, cos, deg2rad, arctan2, \
arcsin, rad2deg
import xml.etree.ElementTree as etree
import h5py
from pykdtree.kdtree import KDTree
WGS84_A = 6378137.0
WGS84_F = 1.0 / 298.257223563
WGS84_B = WGS84_A*(1.0 - WGS84_F)
WGS84_E2 = 2 * WGS84_F - WGS84_F ** 2
#Rotational angular velocity of Earth in radians/sec from IERS
# Conventions (2003).
ANGVEL = 7.2921150e-5;
def LLA2ECEF(lonIn, latIn, altIn):
"""
Transform lon,lat,alt (WGS84 degrees, meters) to ECEF
x,y,z (meters)
"""
lonRad = deg2rad(np.asarray(lonIn, dtype=np.float64) )
latRad = deg2rad(np.asarray(latIn, dtype=np.float64) )
alt = np.asarray(altIn, dtype=np.float64)
a, b, e2 = WGS84_A, WGS84_B, WGS84_E2
## N = Radius of Curvature (meters), defined as:
N = a/sqrt(1.0-e2*(sin(latRad)**2.0))
##$ calcute X, Y, Z
x=(N+alt)*cos(latRad)*cos(lonRad)
y=(N+alt)*cos(latRad)*sin(lonRad)
z=(b**2.0/a**2.0*N + altIn)*sin(latRad)
return x, y, z
def RAE2ENU(azimuthIn, zenithIn, rangeIn):
"""
Transform azimuth, zenith, range to ENU x,y,z (meters)
"""
azimuth = deg2rad(np.asarray(azimuthIn, dtype=np.float64))
zenith = deg2rad(np.asarray(zenithIn, dtype=np.float64))
r = np.asarray(rangeIn, dtype=np.float64)
# up
up = r*cos(zenith)
# projection on the x-y plane
p = r*sin(zenith)
# north
north = p*cos(azimuth)
# east
east = p*sin(azimuth)
return east, north, up
def ENU2ECEF (east, north, up, lon, lat):
"""
Convert local East, North, Up (ENU) coordinates to the (x,y,z) Earth Centred Earth Fixed (ECEF) coordinates
Reference is here:
http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
Note that laitutde should be geocentric latitude instead of geodetic latitude
Note:
On June 16 2015
This note from https://en.wikipedia.org/wiki/Geodetic_datum
Note: \ \phi is the geodetic latitude. A prior version of this page showed use of the geocentric latitude (\ \phi^\prime).
The geocentric latitude is not the appropriate up direction for the local tangent plane. If the
original geodetic latitude is available it should be used, otherwise, the relationship between geodetic and geocentric
latitude has an altitude dependency, and is captured by ...
"""
x0 = np.asarray(east, dtype=np.float64)
y0 = np.asarray(north, dtype=np.float64)
z0 = np.asarray(up, dtype=np.float64)
lm = deg2rad(np.asarray(lon, dtype=np.float64))
ph = deg2rad(np.asarray(lat, dtype=np.float64))
x=-1.0*x0*sin(lm)-y0*cos(lm)*sin(ph)+z0*cos(lm)*cos(ph)
y= x0*cos(lm) -y0*sin(lm)*sin(ph)+z0*sin(lm)*cos(ph)
z= x0*0 +y0*cos(ph) +z0*sin(ph)
return x, y, z
#####################################################################################
def match_cris_viirs(crisLos, crisPos, viirsPos, viirsMask):
"""
Match crisLos with viirsPos using the method by Wang et al. (2016)
Wang, L., D. A. Tremblay, B. Zhang, and Y. Han, 2016: Fast and Accurate
Collocation of the Visible Infrared Imaging Radiometer Suite
Measurements and Cross-track Infrared Sounder Measurements.
Remote Sensing, 8, 76; doi:10.3390/rs8010076.
"""
# Derive Satellite Postion
crisSat = crisPos - crisLos
# using KD-tree to find best matched points
# build kdtree to find match index
pytree_los = KDTree(viirsPos.reshape(viirsPos.size/3, 3))
dist_los, idx_los = pytree_los.query(crisPos.reshape(crisPos.size/3, 3) , sqr_dists=False)
my, mx = np.unravel_index(idx_los, viirsPos.shape[0:2])
idy, idx = find_match_index(crisLos.reshape(crisLos.size/3, 3),\
crisSat.reshape(crisSat.size/3, 3),\
viirsPos, viirsMask, mx, my)
idy = np.array(idy).reshape(crisLos.shape[0:crisLos.ndim-1])
idx = np.array(idx).reshape(crisLos.shape[0:crisLos.ndim-1])
return idy, idx
##############################################################################################
# Satellite data reader
# read CrIS SDR files
def read_cris_sdr (filelist, sdrFlag=False):
"""
Read JPSS CrIS SDR and return LW, MW, SW Spectral. Note that this method
is very fast but can't open too many files (<1024) simultaneously.
"""
sdrs = [h5py.File(filename) for filename in filelist]
real_lw = np.concatenate([f['All_Data']['CrIS-SDR_All']['ES_RealLW'][:] for f in sdrs])
real_mw = np.concatenate([f['All_Data']['CrIS-SDR_All']['ES_RealMW'][:] for f in sdrs])
real_sw = np.concatenate([f['All_Data']['CrIS-SDR_All']['ES_RealSW'][:] for f in sdrs])
if not sdrFlag:
return real_lw, real_mw, real_sw
else:
QF3_CRISSDR = np.concatenate([f['All_Data']['CrIS-SDR_All']['QF3_CRISSDR'][:] for f in sdrs])
QF4_CRISSDR = np.concatenate([f['All_Data']['CrIS-SDR_All']['QF4_CRISSDR'][:] for f in sdrs])
#sdrQa = shift(shift(qf3,-6),6)
sdrQa = QF3_CRISSDR & 0b00000011
#GeoQa = shift(shift(shift(qf3, 2),-7), 7)
geoQa = (QF3_CRISSDR & 0b00000100) >> 2
# dayFlag = shift(shift(qf4, -7), 7)
dayFlag = QF4_CRISSDR & 0b00000001
return real_lw, real_mw, real_sw, sdrQa, geoQa, dayFlag
####################################################################################
## read CrIS GOE files
def read_cris_geo (filelist, ephemeris = False):
"""
Read JPSS CrIS Geo files and return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle.
if ephemeris=True, then return forTime, midTime, satellite position, velocity, attitude
"""
geos = [h5py.File(filename) for filename in filelist]
if ephemeris == False:
Latitude = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['Latitude'] [:] for f in geos])
Longitude = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['Longitude'][:] for f in geos])
SatelliteAzimuthAngle = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['SatelliteAzimuthAngle'][:] for f in geos])
SatelliteRange = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['SatelliteRange'][:] for f in geos])
SatelliteZenithAngle = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['SatelliteZenithAngle'][:] for f in geos])
return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle
if ephemeris == True:
FORTime = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['FORTime'] [:] for f in geos])
MidTime = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['MidTime'] [:] for f in geos])
SCPosition = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['SCPosition'] [:] for f in geos])
SCVelocity = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['SCVelocity'] [:] for f in geos])
SCAttitude = np.concatenate([f['All_Data']['CrIS-SDR-GEO_All']['SCAttitude'] [:] for f in geos])
return FORTime, MidTime, SCPosition, SCVelocity, SCAttitude
#################################################################
## READ VIIRS Geofiles
def read_viirs_geo (filelist, ephemeris=False, hgt=False):
"""
Read JPSS VIIRS Geo files and return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle.
if ephemeris=True, then return midTime, satellite position, velocity, attitude
"""
if type(filelist) is str: filelist = [filelist]
if len(filelist) ==0: return None
# Open user block to read Collection_Short_Name
with h5py.File(filelist[0], 'r') as fn:
user_block_size = fn.userblock_size
with open(filelist[0], 'rU') as fs:
ub_text = fs.read(user_block_size)
ub_xml = etree.fromstring(ub_text.rstrip('\x00'))
#print(ub_text)
#print(etree.tostring(ub_xml))
CollectionName = ub_xml.find('Data_Product/N_Collection_Short_Name').text+'_All'
#print(CollectionName)
# read the data
geos = [h5py.File(filename, 'r') for filename in filelist]
if not ephemeris:
Latitude = np.concatenate([f['All_Data'][CollectionName]['Latitude'][:] for f in geos])
Longitude = np.concatenate([f['All_Data'][CollectionName]['Longitude'][:] for f in geos])
SatelliteAzimuthAngle = np.concatenate([f['All_Data'][CollectionName]['SatelliteAzimuthAngle'][:] for f in geos])
SatelliteRange = np.concatenate([f['All_Data'][CollectionName]['SatelliteRange'][:] for f in geos])
SatelliteZenithAngle = np.concatenate([f['All_Data'][CollectionName]['SatelliteZenithAngle'][:] for f in geos])
Height = np.concatenate([f['All_Data'][CollectionName]['Height'][:] for f in geos])
if hgt:
return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle, Height
else:
return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle
if ephemeris:
MidTime = np.concatenate([f['All_Data'][CollectionName]['MidTime'] [:] for f in geos])
SCPosition = np.concatenate([f['All_Data'][CollectionName]['SCPosition'][:] for f in geos])
SCVelocity = np.concatenate([f['All_Data'][CollectionName]['SCVelocity'][:] for f in geos])
SCAttitude = np.concatenate([f['All_Data'][CollectionName]['SCAttitude'][:] for f in geos])
return MidTime, SCPosition, SCVelocity, SCAttitude
####################################################################################
## READ VIIRS SDR files
def read_viirs_sdr (filelist):
"""
READ VIIRS SDR files
"""
if type(filelist) is str: filelist = [filelist]
if len(filelist) == 0: return None
# Opne userbloack to read Collection_Short_Name
with h5py.File(filelist[0], 'r') as fn:
user_block_size = fn.userblock_size
with open(filelist[0], 'rU') as fn:
ub_text = fn.read(user_block_size)
ub_xml = etree.fromstring(ub_text.rstrip('\x00'))
#print(etree.tostring(ub_xml, pretty_print=True))
CollectionName = ub_xml.find('Data_Product/N_Collection_Short_Name').text+'_All'
#print(CollectionName)
s='All_Data/'+CollectionName+'/'
# Read datasets
sdrs = [h5py.File(filename, 'r') for filename in filelist]
if 'BrightnessTemperature' in sdrs[0][s].keys():
BrightnessTemperature = np.concatenate([f[s+'BrightnessTemperature'] for f in sdrs])
BT = BrightnessTemperature
if 'BrightnessTemperatureFactors' in sdrs[0][s].keys():
BrightnessTemperatureFactors=np.concatenate([f[s+'BrightnessTemperatureFactors'] for f in sdrs])
BT = BrightnessTemperature * BrightnessTemperatureFactors[0] + BrightnessTemperatureFactors[1]
if 'Reflectance' in sdrs[0][s].keys():
Reflectance = np.concatenate([f[s+'Reflectance'] for f in sdrs])
ReflectanceFactors=np.concatenate([f[s+'ReflectanceFactors'] for f in sdrs])
BT = Reflectance * ReflectanceFactors[0] + ReflectanceFactors[1]
Radiance = np.concatenate([f[s+'Radiance'] for f in sdrs])
if 'RadianceFactors' in sdrs[0][s].keys():
RadianceFactors=np.concatenate([f[s+'RadianceFactors'] for f in sdrs])
RAD = Radiance * RadianceFactors[0] + RadianceFactors[1]
else:
RAD = Radiance
if CollectionName.find('VIIRS-I') >= 0:
qaStr = 'QF1_VIIRSIBANDSDR'
else: qaStr = 'QF1_VIIRSMBANDSDR'
QF1_VIIRSBANDSDR = np.concatenate([f[s+qaStr] for f in sdrs])
return BT, RAD, QF1_VIIRSBANDSDR
##############################################################################################
def find_match_index (cris_los, cris_sat, viirs_pos_in, viirs_sdrQa_in, \
mx, my, fovDia=0.963):
nLine, nPixel = viirs_pos_in.shape[0:2]
crisShape = cris_los.shape[0:cris_los.ndim]
# setup parameters
cos_half_fov=cos(deg2rad(fovDia/2.0))
if nPixel == 3200: nc = np.round(deg2rad(0.963/2)*833.0/0.75*4).astype(np.int)
if nPixel == 6400: nc = np.round(deg2rad(0.963/2)*833.0/0.375*4).astype(np.int)
# return list
index_x = []
index_y = []
for i in range(0, mx.size):
xd = mx[i]
yd = my[i]
xb = 0 if xd-nc <0 else xd-nc
xe = nPixel-1 if xd+nc >nPixel-1 else xd+nc
yb = 0 if yd-nc <0 else yd-nc
ye = nLine-1 if yd+nc >nLine-1 else yd+nc
viirs_pos = viirs_pos_in[yb:ye, xb:xe, : ]
viirs_Qa = viirs_sdrQa_in[yb:ye, xb:xe]
viirs_los = viirs_pos - cris_sat[i, :]
temp = np.dot(viirs_los, cris_los[i, :])
temp = temp / LA.norm(viirs_los, axis=2)
cos_angle = temp / LA.norm(cris_los[i, :])
iy, ix = np.where ( (viirs_Qa == 0) & (cos_angle > cos_half_fov) )
index_x.append(ix+xb)
index_y.append(iy+yb)
return index_y, index_x