-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
78 lines (62 loc) · 2.28 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import yaml
import argparse
import numpy as np
from pathlib import Path
from __init__ import *
from experiment import VAEXperiment, VDEXperiment
import torch.backends.cudnn as cudnn
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from dataset import VAEDataset, VDEDataset, load_edges
from utils import structural_inference_pipeline, calculate_auroc, store_adj_and_results
from arg_parser import parse_args
# from pytorch_lightning.plugins import DDPPlugin
args = parse_args()
with open(args.filename, 'r') as file:
try:
config = yaml.safe_load(file)
except yaml.YAMLError as exc:
print(exc)
tb_logger = TensorBoardLogger(save_dir=args.save_folder_path,
name=args.tb_name,)
# For reproducibility
seed_everything(args.seed, True)
# Dataset setup
data = VDEDataset(args=args, pin_memory=len(config['trainer_params']['gpus']) != 0)
data.setup()
edges = load_edges(args)
model = vae_models['VDE'](
input_size=args.dims,
hidden_size=args.hidden,
dropout_rate=args.dropout,
)
experiment = VDEXperiment(
vae_model=model,
edges=edges,
params=config['exp_params']
)
runner = Trainer(logger=tb_logger,
callbacks=[
LearningRateMonitor(),
ModelCheckpoint(save_top_k=2,
dirpath =os.path.join(tb_logger.log_dir , "checkpoints"),
monitor= "val_loss",
save_last= True),
],
strategy="ddp",
accelerator=args.device,
max_epochs=args.epochs)
# **config['trainer_params'])
print(f"======= Training {config['model_params']['name']} =======")
runner.fit(experiment, datamodule=data)
# get latent
predict = runner.predict(experiment, dataloaders=data.test_dataloader(), return_predictions=True)
# structural inference with ppcor
adjs = structural_inference_pipeline(predict, args)
# calculate the AUROC
auroc_score, ls_auroc_score = calculate_auroc(adjs, edges)
# save results
store_adj_and_results(adjs, edges, ls_auroc_score, args)