-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.rs
162 lines (130 loc) · 4.83 KB
/
kmeans.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
extern crate rulinalg;
extern crate rand;
use rulinalg::matrix::{BaseMatrix, Matrix, Axes};
use rulinalg::norm::Euclidean;
use rand::Rng;
use model::UnsupervisedLearning;
pub struct KMeans {
pub centroids_count: usize,
pub centroids: Option<Matrix<f64>>,
pub iterations: usize,
}
impl KMeans {
pub fn new(centroids_count: usize, iterations: usize) -> KMeans {
KMeans {
centroids_count,
centroids: None,
iterations,
}
}
fn initialize_centroids(&mut self, inputs: &Matrix<f64>) {
// TODO: check for centroids_count <= inputs.rows
let mut rng = rand::thread_rng();
let inputs_rows = inputs.rows();
let mut centroids_idx_vec: Vec<usize> = Vec::with_capacity(self.centroids_count);
while centroids_idx_vec.len() < centroids_idx_vec.capacity() {
let idx = rng.gen_range(0, inputs_rows);
if !centroids_idx_vec.contains(&idx) {
centroids_idx_vec.push(idx);
}
}
self.centroids = Some(inputs.select_rows(¢roids_idx_vec));
}
fn get_closest_centroids(&self, inputs: &Matrix<f64>) -> Vec<usize> {
let mut centroids_inputs_idx: Vec<usize> = vec![];
// For each input, compute euclidean norm to find closest centroid
for input in inputs.row_iter() {
let input = input.into_matrix();
let mut min_idx: Option<usize> = None;
let mut min_norm: Option<f64> = None;
if let Some(ref centroids) = self.centroids {
for (centroid_idx, centroid) in centroids.row_iter().enumerate() {
let centroid = centroid.into_matrix();
let norm = input.metric(¢roid, Euclidean);
if min_norm.is_none() {
min_norm = Some(norm);
min_idx = Some(centroid_idx);
} else if min_norm.unwrap() > norm {
min_norm = Some(norm);
min_idx = Some(centroid_idx);
}
}
}
centroids_inputs_idx.push(min_idx.unwrap());
}
centroids_inputs_idx
}
fn update_centroids(&mut self, inputs: &Matrix<f64>, centroids_inputs_idx: Vec<usize>) {
let mut new_centroids: Vec<f64> = Vec::with_capacity(self.centroids_count * inputs.cols());
if let Some(ref centroids) = self.centroids {
for (centroid_idx, _centroid) in centroids.row_iter().enumerate() {
let inputs_idx: Vec<usize> = centroids_inputs_idx
.iter()
.enumerate()
.filter(|&(_i, value)| value == ¢roid_idx)
.map(|(i, _value)| i)
.collect();
new_centroids.extend(inputs.select_rows(&inputs_idx).mean(Axes::Row).into_vec());
}
}
self.centroids = Some(Matrix::new(self.centroids_count, inputs.cols(), new_centroids));
}
}
impl UnsupervisedLearning<Matrix<f64>, usize> for KMeans {
fn fit(&mut self, inputs: &Matrix<f64>) -> Result<(), ()> {
// Initialize centroids
self.initialize_centroids(inputs);
for _i in 0..self.iterations {
// Store old centroids to compare with the new one
let old_centroids = &self.centroids.clone();
// Get closest centroid for each input
let centroids_inputs_idx = self.get_closest_centroids(inputs);
// Update centroids
self.update_centroids(inputs, centroids_inputs_idx);
if old_centroids == &self.centroids {
break;
}
}
Ok(())
}
fn predict(&self, inputs: &Matrix<f64>) -> Result<usize, ()> {
match self.centroids {
Some(ref _centroids) => Ok(self.get_closest_centroids(inputs)[0]),
None => Err(()), // Not trained
}
}
}
#[test]
fn test_create_kmeans_model() {
let model = KMeans::new(2, 1000);
assert_eq!(model.centroids_count, 2);
assert_eq!(model.iterations, 1000);
assert_eq!(model.centroids, None);
}
#[test]
fn test_fit_kmeans_model() {
let mut model = KMeans::new(2, 100);
let inputs = Matrix::new(4, 2, vec![
0.0, 0.0,
1.0, 1.0,
1.0, 0.75,
0.75, 1.0
]);
let fit_result = model.fit(&inputs);
assert!(fit_result.is_ok());
assert!(model.centroids.is_some())
}
#[test]
fn test_predict_kmeans_model() {
let mut model = KMeans::new(2, 100);
let inputs = Matrix::new(4, 2, vec![
0.0, 0.0,
1.0, 1.0,
1.0, 0.75,
0.75, 1.0
]);
model.fit(&inputs).unwrap();
let result_1 = model.predict(&Matrix::new(1, 2, vec![-1.0, -1.0]));
let result_2 = model.predict(&Matrix::new(1, 2, vec![0.0, 0.0]));
assert_eq!(result_1, result_2);
}