-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpretrain_main.py
executable file
·166 lines (133 loc) · 5.36 KB
/
pretrain_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.loggers import WandbLogger
from src.dataloader import prepare_data_source_only
from src.i3d import InceptionI3d, load_i3d_imagenet_pretrained
from src.utils import ConfusionMatrix, EpochCheckpointer, PseudoLabelDistribution
from src.video_model import PretrainVideoModel
def parse_args():
SUP_OPT = ["sgd", "adam"]
SUP_SCHED = ["reduce", "cosine", "step", "exponential", "none"]
parser = argparse.ArgumentParser()
parser.add_argument("--source_dataset", type=str)
parser.add_argument("--val_dataset", type=str)
# optimizer
parser.add_argument("--optimizer", default="sgd", choices=SUP_OPT)
parser.add_argument("--lr", type=float, default=0.1)
parser.add_argument("--weight_decay", type=float, default=0.0001)
# scheduler
parser.add_argument("--scheduler", choices=SUP_SCHED, default="reduce")
parser.add_argument(
"-lr_decay_steps",
"--lr_decay_steps",
default=[200, 300, 350],
type=int,
nargs="+",
)
# general settings
parser.add_argument("--epochs", type=int)
parser.add_argument("--batch_size", type=int, default=8)
# training settings
parser.add_argument("--resume_training_from", type=str)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--gpus", type=int, nargs="+")
# extra model stuff
parser.add_argument("--bottleneck_size", type=int, default=256)
parser.add_argument("--projection_size", type=int, default=128)
parser.add_argument(
"--aggregation", choices=["avg", "lstm", "lstm_weights", "mlp", "mlp_weights"]
)
parser.add_argument("--video_dropout", type=float, default=0.5)
# I3D pretraining
parser.add_argument("--imagenet_pretrained", action="store_true")
# data stuff
parser.add_argument("--frame_size", type=int, default=224)
parser.add_argument("--n_frames", type=int, default=16)
parser.add_argument("--n_clips", type=int, default=4)
parser.add_argument("--source_augmentations", default=[], nargs="+")
parser.add_argument("--source_patch_aug_folder", default=None)
parser.add_argument(
"--source_patch_aug_mode", default=None, choices=["diff_video", "same_video"]
)
parser.add_argument("--patch_size", default=64, type=int)
# wandb
parser.add_argument("--name")
parser.add_argument("--project")
parser.add_argument("--wandb", action="store_true")
# backend (for docker?)
parser.add_argument("--distributed_backend", default="ddp", choices=["ddp"])
# other
parser.add_argument("--layers", type=int, default=1)
parser.add_argument("--add_bn", action="store_true")
parser.add_argument("--layers_ca", type=int, default=1)
parser.add_argument("--add_bn_ca", action="store_true")
parser.add_argument("--third_projection", action="store_true")
parser.add_argument("--oracle", action="store_true")
args = parser.parse_args()
# find number of classes
args.num_classes = len(set(os.listdir(args.source_dataset)))
# add momentum if sgd
args.extra_optimizer_args = {}
if args.optimizer == "sgd":
args.extra_optimizer_args["momentum"] = 0.9
# assert settings for source patch augmentation
if "patch" in args.source_augmentations:
assert args.source_patch_aug_folder is not None
assert args.source_patch_aug_mode is not None
args.source_augmentations_params = {
"patch": {
"folder": args.source_patch_aug_folder,
"mode": args.source_patch_aug_mode,
"size": args.patch_size,
}
}
args.no_task_block = False
args.temperature = 1
args.ce_loss_weight = 1
args.contrastive_loss_weight = 0
return args
def main():
args = parse_args()
model = InceptionI3d()
if args.imagenet_pretrained:
ckp = load_i3d_imagenet_pretrained()
model.load_state_dict(ckp)
model = PretrainVideoModel(model, args.num_classes, args)
# dataloader
source_loader, val_loader = prepare_data_source_only(
args.source_dataset,
args.val_dataset,
n_frames=args.n_frames,
n_clips=args.n_clips,
frame_size=args.frame_size,
augmentations=args.source_augmentations,
augmentations_params=args.source_augmentations_params,
batch_size=args.batch_size,
num_workers=args.num_workers,
divide_mixamo=True,
)
# epoch checkpointer
checkpointer = EpochCheckpointer(args, frequency=25)
pseudo_label_stats = PseudoLabelDistribution(args)
cm = ConfusionMatrix(args)
callbacks = [checkpointer, pseudo_label_stats, cm]
# wandb logging
if args.wandb:
wandb_logger = WandbLogger(name=args.name, project=args.project)
wandb_logger.watch(model, log="gradients", log_freq=100)
wandb_logger.log_hyperparams(args)
trainer = Trainer(
max_epochs=args.epochs,
gpus=[*args.gpus],
logger=wandb_logger if args.wandb else None,
distributed_backend=args.distributed_backend,
precision=32 if args.aggregation in ["lstm", "lstm_weights"] else 16,
sync_batchnorm=True,
resume_from_checkpoint=args.resume_training_from,
callbacks=callbacks,
)
trainer.fit(model, source_loader, val_loader)
if __name__ == "__main__":
seed_everything(5)
main()