-
Notifications
You must be signed in to change notification settings - Fork 259
/
Copy pathexportWeight.lua
44 lines (43 loc) · 1.33 KB
/
exportWeight.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
require 'csvigo'
require 'torch'
require 'nn'
require 'dpnn'
require 'image'
require 'paths'
function exportWeight (name, module, layer)
if layer == 'SpatialConvolution' then
local w = module.weight
local b = module.bias
local shape = module.weight:size()
local flatten = 1
for i=1, shape:size() do
flatten = flatten * shape[i]
end
w = torch.reshape(w, flatten)
local w_csv = csvigo.File(paths.concat('./weights', name .. "_w.csv"), 'w')
w_csv:write(w:totable())
w_csv:close()
local b_csv = csvigo.File(paths.concat('./weights', name .. "_b.csv"), 'w')
b_csv:write(b:totable())
b_csv:close()
print(shape)
end
if layer == 'SpatialBatchNormalization' then
local w = module.weight
local b = module.bias
local m = module.running_mean
local v = module.running_var
local w_csv = csvigo.File(paths.concat('./weights', name .. "_w.csv"), 'w')
local b_csv = csvigo.File(paths.concat('./weights', name .. "_b.csv"), 'w')
local m_csv = csvigo.File(paths.concat('./weights', name .. "_m.csv"), 'w')
local v_csv = csvigo.File(paths.concat('./weights', name .. "_v.csv"), 'w')
w_csv:write(w:totable())
b_csv:write(b:totable())
m_csv:write(m:totable())
v_csv:write(v:totable())
w_csv:close()
b_csv:close()
m_csv:close()
v_csv:close()
end
end