-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp.py
1623 lines (1331 loc) · 54.7 KB
/
exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import torch
from fire import Fire
from matplotlib import pyplot as plt
from pathlib import Path
from random import sample
from torch import optim, distributions
from torch.optim.optimizer import Optimizer
from torch.nn import functional
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
from typing import Tuple, List, Union, Set
from causal_rl.environments import CausalEnv, HardSpheres, MultiTyped, WithTypes, Mujoco
from causal_rl.graph_predictor import FullyConnectedPredictor, ConvLinkPredictor
from causal_rl.state_predictor import DiscretePredictor, WeightedPredictor
from causal_rl.model import NaivePredictor, GraphAndMessages
from causal_rl.utils import plot_exploration, plot_coll_loss, plot_state_loss, load_sim
ENVIRONMENT_MAP = {
"bouncing_balls": HardSpheres,
"multi_typed": MultiTyped,
"with_types": WithTypes,
"mujoco": Mujoco,
}
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
class StateAndGraph(Dataset):
"""Abstract base class.
Does absolutely nothing, just here for type checking.
"""
def __init__(self, env: CausalEnv):
super().__init__()
self.env = env
def __getitem__(
self, index: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
raise NotImplementedError
def update(self, index: Union[int, torch.Tensor]):
raise NotImplementedError
class SimpleDataset(StateAndGraph):
def __init__(self, env: CausalEnv, steps: int):
self.env = env
self.steps = steps
self.states, self.collisions, self.rewards = load_sim(self.env, self.steps + 1)
self.indices: List[int] = []
self.bad_state_indices: Set[int] = set()
def update(self, index: Union[int, torch.Tensor]):
if isinstance(index, int):
self.bad_state_indices.add(index)
else:
for i in index:
self.bad_state_indices.add(i.item())
def __len__(self):
return self.steps
def __getitem__(self, index: int):
self.indices.append(index)
return self.states[index], self.states[index + 1], self.collisions[index], index
class BufferedState(SimpleDataset):
def __init__(self, env, steps: int, prob: float, buffer_size: int = 200):
super().__init__(env, steps)
self.prob = prob
self.buffer_size = buffer_size
def __getitem__(
self, index: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
if (
len(self.bad_state_indices) > self.buffer_size
) and np.random.random() < self.prob:
new_index = sample(self.bad_state_indices, 1)[0]
else:
new_index = index
self.indices.append(new_index)
return (
self.states[new_index],
self.states[new_index + 1],
self.collisions[new_index],
new_index,
)
class PrebufferedState(BufferedState):
def __init__(
self,
env: CausalEnv,
steps: int,
prob: float,
bad_states: torch.Tensor,
bad_collisions: torch.Tensor,
):
super().__init__(env, steps, prob)
self.base_states = self.states
self.base_collisions = self.collisions
self.bad_states = bad_states
self.bad_collisions = bad_collisions
self.states = torch.cat((self.base_states, self.bad_states))
self.collisions = torch.cat((self.base_collisions, self.bad_collisions))
self.offset = len(self.base_states)
self.bad_count = 0
def update(self, index: Union[int, torch.Tensor]):
if isinstance(index, int):
self.bad_state_indices.add(index)
else:
for i in index:
self.bad_state_indices.add(i.item())
def __len__(self):
return self.steps
def __getitem__(self, index: int):
if np.random.random() < self.prob:
temp = np.random.choice(len(self.bad_states) - 1)
real_index = self.offset + temp
self.bad_count += 1
else:
real_index = index % (self.offset - 1)
self.indices.append(real_index)
return (
self.states[real_index],
self.states[real_index + 1],
self.collisions[real_index],
real_index,
)
class StoredBuffer(StateAndGraph):
"""An alternative version of PrebufferedState that can be stored.
The implementation isn't clean but it should be easy to understand and modify.
Eventually this will replace PrebufferedState entirely.
"""
def __init__(self, env: CausalEnv, prob: float, generator: "Experiment"):
super().__init__(env)
self.bad_state_indices: Set[int] = set()
try:
self.states, self.collisions = self.load()
self.steps = len(self.states) - 1
except FileNotFoundError:
bad_states, bad_collisions = self.generate_bad_states(generator)
extra_steps = int(len(bad_states) / prob)
good_states, good_collisions, _ = load_sim(self.env, extra_steps + 1)
self.steps = len(bad_states) + extra_steps
# Plausibly these should be shuffled so it still works when you don't pass shuffle=True.
self.states = torch.cat((good_states, bad_states))
self.collisions = torch.cat((good_collisions, bad_collisions))
self.store()
def __len__(self) -> int:
return self.steps
def __getitem__(self, index: int):
return self.states[index], self.states[index + 1], self.collisions[index], index
def update(self, index: Union[int, torch.Tensor]):
if isinstance(index, int):
self.bad_state_indices.add(index)
else:
for i in index:
self.bad_state_indices.add(i.item())
def generate_bad_states(self, generator) -> Tuple[torch.Tensor, torch.Tensor]:
generator.run()
bad_states = generator.dataset.states[list(generator.dataset.bad_state_indices)]
bad_collisions = generator.dataset.collisions[
list(generator.dataset.bad_state_indices)
]
return bad_states, bad_collisions
def paths(self) -> Tuple[Path, Path]:
base_name = "stored_buffer_{}_".format(self.env.name)
states_path = DATA / (base_name + "states.tch")
collisions_path = DATA / (base_name + "collisions.tch")
return states_path, collisions_path
def load(self) -> Tuple[torch.Tensor, torch.Tensor]:
states_path, collisions_path = self.paths()
states = torch.load(str(states_path))
collisions = torch.load(str(collisions_path))
return states, collisions
def store(self):
states_path, collisions_path = self.paths()
torch.save(self.states, str(states_path))
torch.save(self.collisions, str(collisions_path))
# Keys are (convolutional, variational, local)
graph_predictor_map = {
False: FullyConnectedPredictor,
True: ConvLinkPredictor,
}
class Experiment:
name = ""
def __init__(self, env, steps: int = 100, lr: float = 0.001, gen_new: bool = False):
self.env = env
self.steps = steps
self.lr = lr
self.gen_new = gen_new
self.writer = SummaryWriter()
@property
def display_name(self):
return "{}_{}".format(self.name, self.steps)
@property
def hyperparameter_dict(self):
return {"env": self.env.name, "steps": self.steps, "lr": self.lr}
@property
def hyperparameter_str(self):
return "env_{}_steps_{}_lr_{}".format(self.env.name, self.steps, self.lr)
@classmethod
def hyperparameter_space(cls):
"""Return the space of all hyperparameters"""
raise NotImplementedError
def get_data(self):
raise NotImplementedError
def run(self):
raise NotImplementedError
def test(self):
raise NotImplementedError
def plot(self):
raise NotImplementedError
def save(self):
raise NotImplementedError
def load(self):
raise NotImplementedError
class NaiveModel(Experiment):
"""Predict the next state with a naive model that depends only on the current state."""
name = "naive_model"
def __init__(
self,
env,
steps: int,
lr: float,
epochs: int = 1,
gen_new: bool = True,
reg_param: float = 0.5,
batch_size: int = 32,
save_model: bool = False,
):
super().__init__(env, steps, lr, gen_new=gen_new)
self.save_model = save_model
# Training parameters
self.epochs = epochs
self.reg_param = reg_param
self.batch_size = batch_size
self.state_predictor = NaivePredictor(self.env.num_obj, self.env.obj_dim).to(
DEVICE
)
@property
def graph_size(self):
return self.env.num_obj * (self.env.num_obj - 1)
@property
def display_name(self):
return "{}_{}".format(self.name, self.steps)
def get_data(self) -> Tuple[StateAndGraph, DataLoader]:
"Get a dataset and dataloader for the current environment"
self.dataset = SimpleDataset(self.env, self.steps)
self.dataloader = DataLoader(
self.dataset, batch_size=self.batch_size, shuffle=True
)
return self.dataset, self.dataloader
def run(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Run the entire training loop
Returns:
Losses and collision losses
"""
# Setup
dataset, dataloader = self.get_data()
s_opt = optim.Adam(self.state_predictor.parameters(), lr=self.lr)
s_opt.zero_grad()
losses = torch.zeros(self.epochs * self.steps)
for e in range(self.epochs):
print("Epoch: {}".format(e))
for i, (
node_state_batch,
true_state_batch,
true_graph_batch,
true_indices,
) in enumerate(dataloader):
mini_batch_size = len(node_state_batch)
storage_index = e * self.steps + i * self.batch_size
# The raw predictions for the upper triangle of the adjacency matrix.
state_pred = self.state_predictor(node_state_batch)
# Calculate losses and backprop
# MSE Loss
loss = functional.mse_loss(
state_pred, true_state_batch, reduction="none"
).view(mini_batch_size, -1)
batch_loss = loss.sum(dim=1) / loss.shape[1]
# L2 norm loss
# batch_loss = torch.norm((true_state_batch - state_pred).view(mini_batch_size, -1), dim=1)
mean_loss = batch_loss.mean()
# Store bad states.
if storage_index > self.batch_size * 5:
max_loss = (
2.0
* losses[storage_index - self.batch_size : storage_index].mean()
)
filt = batch_loss > max_loss
bad_indices = true_indices[filt.nonzero(as_tuple=False).view(-1)]
dataset.update(bad_indices)
mean_loss.backward()
s_opt.step()
s_opt.zero_grad()
# Store everything
batch_norm = torch.norm(
(true_state_batch - state_pred).view(mini_batch_size, -1), dim=1
)
losses[
storage_index : storage_index + mini_batch_size
] = (
batch_loss.detach()
) # / true_state_batch.view(mini_batch_size, -1).norm(dim=1)
# self.writer.add_scalar('State L2 Loss', mean_loss.item(), storage_index)
print(losses[e * self.steps : (e + 1) * self.steps].mean())
if self.save_model:
self.save()
return losses, torch.zeros(self.epochs * self.steps)
class FullArch(Experiment):
"""The full architecture experiment.
Attributes:
env (Environment): The environment to run on.
graph_predictor (CDAGPredictor): A neural network whose output is a distribution on Bipartite(k, k), where k is the number of
objects in the environment.
state_predictor (nn.Module): A neural network from (current_state, Bipartite(k, k)) -> next_state.
variational (bool): Whether or not to use the weighted or the sampling architecture.
asymmetric (bool): Whether or not the model should predict asymmetric causal graphs.
convolutional (bool): Whether or not the graph predictor should be convolutional or fully-connected
local (bool): Whether or not to force the graph predictor to only predict local causal relations.
epochs (int): Number of epochs to run for.
steps (int): Number of steps in an epoch.
batch_size (int): Size of an individual batch.
lr (float): The initial learning rate for Adam.
reg_param (float): L1 regularization parameter on the causal graph prediction.
"""
name = "full"
def __init__(
self,
env,
steps: int,
lr: float,
epochs: int = 1,
gen_new: bool = True,
reg_param: float = 0.0,
lin_widths: Tuple[int, ...] = (256, 256, 256),
msg_widths: Tuple[int, ...] = (256, 256),
final_widths: Tuple[int, ...] = (256, 256),
asymmetric: bool = False,
convolutional: bool = False,
local: bool = False,
iteration_steps: int = 0,
bad_state_weight: float = 1.0,
variational: bool = False,
buffer_prob: float = 0.0,
max_distance: float = 30.0,
batch_size: int = 128,
save_model: bool = False,
):
super().__init__(env, steps, lr, gen_new=gen_new)
self.save_model = save_model
# Training parameters
self.epochs = epochs
self.reg_param = reg_param
self.batch_size = batch_size
self.buffer_prob = buffer_prob
self.iteration_steps = iteration_steps
self.bad_state_weight = bad_state_weight
# Model parameters
self.asymmetric = asymmetric
self.convolutional = convolutional
self.variational = variational
self.local = local
self.max_distance = max_distance
# Make the graph predictor
# TODO: Cleanup. Should be one if/else. Or just pass the graph and state predictors as args.
graph_predictor_class = graph_predictor_map[convolutional]
if self.local:
self.graph_predictor = graph_predictor_class(
env.num_obj,
env.obj_dim,
asymmetric=self.asymmetric,
max_distance=self.max_distance,
location_indices=self.env.location_indices,
layer_widths=lin_widths,
).to(DEVICE)
else:
self.graph_predictor = graph_predictor_class(
env.num_obj,
env.obj_dim,
asymmetric=self.asymmetric,
layer_widths=lin_widths,
).to(DEVICE)
# Make the state predictor
if variational:
self.state_predictor = DiscretePredictor(
self.env.num_obj, self.env.obj_dim
).to(DEVICE)
else:
self.state_predictor = WeightedPredictor(
self.env.num_obj,
self.env.obj_dim,
msg_widths=msg_widths,
final_widths=final_widths,
).to(DEVICE)
@property
def graph_size(self):
return self.env.num_obj * (self.env.num_obj - 1)
@property
def display_name(self):
extra = ""
if self.asymmetric:
extra += "_asymmetric"
if self.variational:
extra += "_variational"
if self.bad_state_weight != 1.0:
extra += "_overweight({})".format(self.bad_state_weight)
if self.iteration_steps > 0:
extra += "_iteration({})".format(self.iteration_steps)
if self.local:
extra += "_local"
if self.convolutional:
extra += "_wconvs"
if self.buffer_prob > 0.0:
extra += "_buffer({})".format(self.buffer_prob)
return "{}_{}".format(self.name, self.steps) + extra
def get_data(self) -> Tuple[StateAndGraph, DataLoader]:
"Get a dataset and dataloader for the current environment"
if self.buffer_prob > 0.0:
dataset: StateAndGraph = BufferedState(
self.env, self.steps, self.buffer_prob
)
else:
dataset = SimpleDataset(self.env, self.steps)
self.dataset = dataset
self.dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
return self.dataset, self.dataloader
def run(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Run the entire training loop
Returns:
Losses and collision losses
"""
# Setup
dataset, dataloader = self.get_data()
g_opt = optim.Adam(self.graph_predictor.parameters(), lr=self.lr)
s_opt = optim.Adam(self.state_predictor.parameters(), lr=self.lr)
g_opt.zero_grad()
s_opt.zero_grad()
losses = torch.zeros(self.epochs * self.steps)
pred_collisions = torch.zeros((self.epochs * self.steps, self.graph_size)).to(
DEVICE
)
# The true collisions at each step
true_collisions: List[torch.Tensor] = []
# The gradients of the graph predictor at each step
graph_gradients: List[List[float]] = []
for e in range(self.epochs):
print("Epoch: {}".format(e))
for i, (
node_state_batch,
true_state_batch,
true_graph_batch,
true_indices,
) in enumerate(dataloader):
mini_batch_size = len(node_state_batch)
storage_index = e * self.steps + i * self.batch_size
# TODO: Move state and graph prediction into FullModel class.
# The raw predictions for the upper triangle of the adjacency matrix.
pred_adj_matrix_probabilities = self.graph_predictor(
node_state_batch.view(mini_batch_size, -1)
)
if not self.variational:
pred_adj_matrix = pred_adj_matrix_probabilities
else:
dist = distributions.Bernoulli(probs=pred_adj_matrix_probabilities)
pred_adj_matrix = dist.sample()
# Next state prediction
state_pred = self.state_predictor(node_state_batch, pred_adj_matrix)
## Calculate losses and backprop
# MSE Loss
loss = functional.mse_loss(
state_pred, true_state_batch, reduction="none"
).view(mini_batch_size, -1)
batch_loss = loss.sum(dim=1) / loss.shape[1]
# Handle bad states
if storage_index > self.batch_size * 5:
max_loss = (
2.0
* losses[
storage_index - self.batch_size // 2 : storage_index
].mean()
)
filt = batch_loss > max_loss
# Store bad state indices
bad_indices = true_indices[filt.nonzero(as_tuple=False).view(-1)]
dataset.update(bad_indices)
# Overweight bad states
batch_loss[filt] *= self.bad_state_weight
mean_loss = batch_loss.mean()
# L1 regularization for the graph predictor
if self.reg_param > 0:
l1_reg = self.reg_param * torch.norm(
pred_adj_matrix_probabilities, p=1
)
combined_loss = l1_reg + mean_loss
else:
combined_loss = mean_loss
combined_loss.backward(retain_graph=True)
# The loss for the graph predictor
# Only defined when we use the variational architecture.
if self.variational:
graph_loss = dist.log_prob(pred_adj_matrix) * combined_loss.detach()
graph_loss.mean().backward()
# TODO: Move into FullModel class.
# Record graph predictor gradients
# for j in (0, 3, 5):
# layer = self.graph_predictor.layers[j]
# grad_norm = layer.weight.grad.norm().item()
# self.writer.add_scalar('Graph Predictor Layer {} Gradient'.format(j // 2), grad_norm, i)
self.backprop(g_opt, s_opt)
# Store everything
pred_collisions[
storage_index : storage_index + mini_batch_size
] = pred_adj_matrix_probabilities
true_collisions.append(true_graph_batch)
batch_norm = torch.norm(
(true_state_batch - state_pred).view(mini_batch_size, -1), dim=1
)
losses[
storage_index : storage_index + mini_batch_size
] = (
batch_loss.detach()
) # / true_state_batch.view(mini_batch_size, -1).norm(dim=1)
self.writer.add_scalar(
"State L2 Loss", combined_loss.item(), storage_index
)
print(self.test())
if self.save_model:
self.save()
# Compute collision losses
collision_losses, full_coll_losses = self.collision_losses(
true_collisions, pred_collisions
)
# for i, cl in enumerate(collision_losses):
# self.writer.add_scalar('Collision L2 Loss', cl, i)
# Store gradients
# grad_tens = torch.tensor(graph_gradients)
return losses, full_coll_losses.detach()
def backprop(self, g_opt: Optimizer, s_opt: Optimizer):
g_opt.step()
s_opt.step()
g_opt.zero_grad()
s_opt.zero_grad()
def collision_losses(
self, true_collisions: List[torch.Tensor], pred_collisions: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Calculate the L2 norm between the true and predicted causal graphs.
Also calculates the L2 norm on just the states that had non-trivial causal graphs.
"""
mask = torch.ones((self.env.num_obj, self.env.num_obj), dtype=torch.bool).to(
DEVICE
)
mask = mask ^ torch.eye(self.env.num_obj, dtype=torch.bool).to(DEVICE)
collisions_tensor = torch.cat(true_collisions)
masked_collisions = torch.masked_select(collisions_tensor, mask).view(
collisions_tensor.shape[0], -1
)
had_collision_index = torch.nonzero(masked_collisions, as_tuple=False)[
:, 0
].unique()
true_had = masked_collisions[had_collision_index]
pred_had = pred_collisions[had_collision_index]
coll_losses = torch.norm(true_had - pred_had, dim=1)
full_coll_losses = torch.norm(masked_collisions - pred_collisions, dim=1)
return coll_losses, full_coll_losses
def test(self) -> Tuple[float, float]:
"""Test a trained model.
Returns:
Average state prediction and graph prediction loss.
"""
test_size = 1000
dataset = SimpleDataset(self.env, test_size)
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
self.graph_predictor.eval()
self.state_predictor.eval()
losses = torch.zeros(test_size)
pred_collisions = torch.zeros((test_size, self.graph_size)).to(DEVICE)
true_collisions: List[torch.Tensor] = []
for i, (
node_state_batch,
true_state_batch,
true_graph_batch,
true_indices,
) in enumerate(dataloader):
mini_batch_size = len(node_state_batch)
storage_index = i * self.batch_size
# The raw predictions for the upper triangle of the adjacency matrix.
pred_adj_matrix_probabilities = self.graph_predictor(
node_state_batch.view(mini_batch_size, -1)
)
if not self.variational:
pred_adj_matrix = pred_adj_matrix_probabilities
else:
dist = distributions.Bernoulli(probs=pred_adj_matrix_probabilities)
pred_adj_matrix = dist.sample()
state_pred = self.state_predictor(node_state_batch, pred_adj_matrix)
# Calculate losses and backprop
# MSE Loss
loss = functional.mse_loss(
state_pred, true_state_batch, reduction="none"
).view(mini_batch_size, -1)
batch_loss = loss.sum(dim=1) / loss.shape[1]
mean_loss = batch_loss.mean()
# Store everything
pred_collisions[
storage_index : storage_index + mini_batch_size
] = pred_adj_matrix_probabilities
true_collisions.append(true_graph_batch)
batch_norm = torch.norm(
(true_state_batch - state_pred).view(mini_batch_size, -1), dim=1
)
losses[
storage_index : storage_index + mini_batch_size
] = batch_loss.detach()
collision_losses, full_coll_losses = self.collision_losses(
true_collisions, pred_collisions
)
return losses.mean().item(), full_coll_losses.mean().item()
def save(self):
torch.save(
self.graph_predictor.state_dict(),
str(MODELS / "{}_graph.tch".format(self.display_name)),
)
torch.save(
self.state_predictor.state_dict(),
str(MODELS / "{}_state.tch".format(self.display_name)),
)
def load(self):
self.graph_predictor.load_state_dict(
torch.load(str(MODELS / "{}_graph.tch".format(self.display_name)))
)
self.state_predictor.load_state_dict(
torch.load(str(MODELS / "{}_state.tch".format(self.display_name)))
)
class Iterated(FullArch):
def __init__(self, *args, g_batches: int = 128, s_batches: int = 128, **kwargs):
kwargs["reg_param"] = 0.0
super().__init__(*args, **kwargs)
self.g_batches = g_batches
self.s_batches = s_batches
self.use_g = True
self.batch = 0
def backprop(self, g_opt: Optimizer, s_opt: Optimizer):
self.batch += 1
# TODO: Instead of using separate optimizers, alternately freeze models
# This integrates better with a FullModel setup.
if self.use_g:
g_opt.step()
if self.batch == self.g_batches:
self.batch = 0
self.use_g = False
else:
s_opt.step()
if self.batch == self.s_batches:
self.batch = 0
self.use_g = True
g_opt.zero_grad()
s_opt.zero_grad()
class PreBuffer(FullArch):
"""An experiment where we first generate a buffer of high-error states, then train with those"""
name = "prebuffer"
def __init__(self, *args, buffer_prob: float = 0.5, **kwargs):
super().__init__(*args, **kwargs)
# self.buffer_prob = 0.4
self.buffer_start = 250
self.generating_arch = FullArch(
self.env, min(self.steps * 12, 12000), self.lr, **kwargs
)
def get_data(self) -> Tuple[StateAndGraph, DataLoader]:
"Get a dataset and dataloader for the current environment"
self.save_models = True
self.dataset: StateAndGraph = StoredBuffer(
self.env, self.buffer_prob, self.generating_arch
)
# Reset steps to match the actual number of steps.
self.steps = len(self.dataset)
self.dataloader = DataLoader(
self.dataset, batch_size=self.batch_size, shuffle=True
)
return self.dataset, self.dataloader
# Death before mixins
class IterBuffer(PreBuffer):
def __init__(
self, *args, g_batches: int = 128, s_batches: int = 128, reg_param=0.0, **kwargs
):
super().__init__(*args, reg_param=reg_param, **kwargs)
self.g_batches = g_batches
self.s_batches = s_batches
self.use_g = True
self.batch = 0
def backprop(self, g_opt: Optimizer, s_opt: Optimizer):
self.batch += 1
# TODO: Instead of using separate optimizers, alternately freeze models
# This integrates better with a FullModel setup.
if self.use_g:
g_opt.step()
if self.batch == self.g_batches:
self.batch = 0
self.use_g = False
else:
s_opt.step()
if self.batch == self.s_batches:
self.batch = 0
self.use_g = True
g_opt.zero_grad()
s_opt.zero_grad()
class PerfectGraph(Experiment):
"""Perform a test using the true collision graphs and a state predictor."""
name = "just_state"
def __init__(
self,
env,
steps: int,
lr: float,
gen_new: bool = True,
buffer_prob: float = 0.0,
variational: bool = False,
batch_size: int = 32,
msg_widths: Tuple[int, ...] = (32, 32),
final_widths: Tuple[int, ...] = (32, 32),
):
super().__init__(env, steps, lr, gen_new=gen_new)
self.buffer_prob = buffer_prob
self.variational = variational
self.batch_size = batch_size
if variational:
self.state_predictor = DiscretePredictor(
self.env.num_obj, self.env.obj_dim
).to(DEVICE)
else:
self.state_predictor = WeightedPredictor(
self.env.num_obj,
self.env.obj_dim,
msg_widths=msg_widths,
final_widths=final_widths,
).to(DEVICE)
@property
def display_name(self):
extra = ""
if self.variational:
extra += "_variational"
return "{}_{}".format(self.name, self.steps) + extra
def get_data(self) -> Tuple[SimpleDataset, DataLoader]:
if self.buffer_prob > 0.0:
dataset: SimpleDataset = BufferedState(
self.env, self.steps, self.buffer_prob
)
else:
dataset = SimpleDataset(self.env, self.steps)
self.dataset = dataset
self.dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
return self.dataset, self.dataloader
def run(self):
s_opt = optim.Adam(self.state_predictor.parameters(), lr=self.lr)
dataset, dataloader = self.get_data()
losses = torch.zeros(self.steps)
mask = torch.ones((self.env.num_obj, self.env.num_obj), dtype=torch.bool).to(
DEVICE
)
mask = mask ^ torch.eye(self.env.num_obj, dtype=torch.bool).to(DEVICE)
for i, (node_state, true_state, true_graph, true_index) in enumerate(
dataloader
):
batch_size = node_state.shape[0]
# Remove diagonal
no_diag = torch.masked_select(true_graph, mask).view(batch_size, -1)
state_pred = self.state_predictor(node_state, no_diag)
# Backprop
s_opt.zero_grad()
# MSE Loss
loss = functional.mse_loss(state_pred, true_state, reduction="none").view(
batch_size, -1
)
batch_loss = loss.sum(dim=1) / loss.shape[1]
mean_loss = batch_loss.mean()
if i > 50 and mean_loss > 2 * losses[i - 50 : i].mean():
dataset.update(true_index)
mean_loss.backward()
s_opt.step()
losses[i * batch_size : (i + 1) * batch_size] = batch_loss.detach()
return losses.detach()
def test(self) -> Tuple[float, float]:
"""Test a trained model.
Returns:
Average state prediction and graph prediction loss.
"""
test_size = 1000
dataset = SimpleDataset(self.env, test_size)
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
self.state_predictor.eval()
losses = torch.zeros(test_size)
mask = torch.ones((self.env.num_obj, self.env.num_obj), dtype=torch.bool).to(
DEVICE
)
mask = mask ^ torch.eye(self.env.num_obj, dtype=torch.bool).to(DEVICE)
for i, (node_state, true_state, true_graph, true_index) in enumerate(
dataloader
):
batch_size = node_state.shape[0]
# Remove diagonal
no_diag = torch.masked_select(true_graph, mask).view(batch_size, -1)
state_pred = self.state_predictor(node_state, no_diag)
# MSE Loss
loss = functional.mse_loss(state_pred, true_state, reduction="none").view(
batch_size, -1
)
batch_loss = loss.sum(dim=1) / loss.shape[1]
losses[i * batch_size : (i + 1) * batch_size] = batch_loss.detach()
return losses.mean().item(), 0.0
def load_or_gen(self):
# try:
# self.load()
# except FileNotFoundError:
self.run()
# self.save()
def save(self):
torch.save(
self.state_predictor.state_dict(),
str(MODELS / "{}_state.tch".format(self.display_name)),
)
def load(self):
self.state_predictor.load_state_dict(
torch.load(str(MODELS / "{}_state.tch".format(self.display_name)))
)
class PerfectState(FullArch):
"""Train the graph predictor with a pretrained state predictor."""
name = "perfect_state"
def __init__(self, env, steps: int, lr: float, **kwargs):
super().__init__(