-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (143 loc) · 4.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import sys
import argparse
import numpy as np
import math
from tensorflow import keras
import tensorflow as tf
import tensorflow_addons as tfa
from data_processing import get_data_from_dataset_name
from model import get_model
from eval_metric import knn_evaluate
from loss import emd_loss, WSSET_loss
import csv
import datetime
import random
parser = argparse.ArgumentParser()
parser.add_argument(
"--dsname",
default="bbcsport",
)
parser.add_argument(
"--batchsize",
default=32,
type=int,
)
parser.add_argument(
"--trainsize",
default=0.8,
type=float,
)
parser.add_argument(
"--maxmember",
default=350,
type=int,
)
parser.add_argument(
"--lr",
default=1e-5,
type=float,
)
parser.add_argument(
"--margin",
default=0.1,
type=float,
)
parser.add_argument(
"--treshold",
default=20,
type=int,
)
parser.add_argument(
"--epochs",
default=100,
type=int,
)
parser.add_argument(
"--loss",
default="gaussian",
)
parser.add_argument(
"--save-dir",
default="saved_model/",
)
parser.add_argument(
"--time",
default=datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
)
parser.add_argument(
"--temperature",
default=0.5,
type=float,
)
parser.add_argument("--istransfer", action="store_true")
parser.add_argument(
"--loadmodel",
default=None,
)
args = parser.parse_args()
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
P, test_idx, train_idx, val_idx, Y, train_dataset = get_data_from_dataset_name(args.dsname,args.trainsize,args.loss,args.batchsize)
transformer_num=5
head_num=7
feed_forward_dim=1000
dropout_rate=0.1
FILENAME="data/wmd/"+args.dsname+".csv"
reader = csv.reader(open(FILENAME, "r"), delimiter=";")
emd_list=list(reader)
model = get_model(transformer_num,head_num,feed_forward_dim,dropout_rate,P.shape[1],args.istransfer,args.loadmodel)
adam = keras.optimizers.Adam(learning_rate=args.lr)
log_dir=args.save_dir+args.dsname+"_"+args.loss+"_"+args.time
high_val =0.0
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
tensorboard_callback.set_model(model)
file_writer = tf.summary.create_file_writer(log_dir+ "/train")
file_writer.set_as_default()
#training loop
for epoch in range(args.epochs):
losses=[]
for (batch,(instance,labels)) in enumerate(train_dataset):
with tf.GradientTape() as tape:
logits = model(instance, training=True)
# print(logits)
# print(labels)
if args.loss == "triplet":
loss_value = tfa.losses.triplet_semihard_loss(labels,logits,args.margin)
print(loss_value)
elif args.loss == "approx_emd":
loss_value = emd_loss(labels,logits,emd_list)
print(loss_value)
elif args.loss == "ce":
loss_value = tf.keras.losses.sparse_categorical_crossentropy(labels, logits)
print(loss_value)
else:
loss_value = WSSET_loss(labels, logits,args.loss,args.treshold,emd_list,args.margin)
grads = tape.gradient(loss_value, model.trainable_variables)
adam.apply_gradients(zip(grads, model.trainable_variables))
current_step=adam.iterations.numpy()
losses.append(loss_value.numpy().mean())
thisloss = np.mean(losses)
print('Epoch {} finished'.format(epoch))
#eval validation set
results = model.predict(P[val_idx])
acc = knn_evaluate(10,results,Y[val_idx])
#eval test set
results = model.predict(P[test_idx])
acc2 = knn_evaluate(10,results,Y[test_idx])
with file_writer.as_default():
tf.summary.scalar('loss value', data=thisloss, step=epoch)
tf.summary.scalar('val acc', data=acc, step=epoch)
tf.summary.scalar('test acc', data=acc2, step=epoch)
if acc2 >high_val:
high_val=acc
model.save_weights(log_dir+"/model_"+args.loss+"_"+args.time+".h5")