-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
305 lines (262 loc) · 9.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import time
import os
from os.path import exists
import torch.nn as nn
import torch
from torch.optim.lr_scheduler import LambdaLR
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import GPUtil
import torch.multiprocessing as mp
from prepare import (
Batch,
create_dataloaders,
data_gen_copy_task,
load_vocab,
load_tokenizers,
)
from optimizer import rate, DummyOptimizer, DummyScheduler
from models import make_tranformers_model
from loss import SimpleLossCompute
from search import greedy_decode, beam_search
from utils import LabelSmoothing
# Training Loop
class TrainState:
"""Track number of steps, examples, and tokens processed"""
step: int = 0 # Steps in the current epoch
accum_step: int = 0 # Number of gradient accumulation steps
samples: int = 0 # total of examples used
tokens: int = 0 # total of tokens processed
def run_epoch(
data_iter,
model,
loss_compute,
optimizer,
scheduler,
mode="train",
accum_iter=1,
train_state=TrainState(),
):
"""Train a single epoch"""
start = time.time()
total_tokens = 0
total_loss = 0
tokens = 0
n_accum = 0
for i, batch in enumerate(data_iter):
out = model.forward(batch.src, batch.tgt, batch.src_mask, batch.tgt_mask) # B, T, vocab
# loss_node = loss_node / accum_iter
loss, loss_node = loss_compute(out, batch.tgt_y, batch.ntokens)
if mode == "train" or mode == "train+log":
loss_node.backward()
train_state.step += 1
train_state.samples += batch.src.shape[0]
train_state.tokens += batch.ntokens
if i % accum_iter == 0:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
n_accum += 1
train_state.accum_step += 1
scheduler.step()
total_loss += loss
total_tokens += batch.ntokens
tokens += batch.ntokens
if i % 40 == 1 and (mode == "train" or mode == "train+log"):
lr = optimizer.param_groups[0]["lr"]
elapsed = time.time() - start
print(
(
"Epoch Step: %6d | Accumulation Step: %3d | Loss: %6.2f "
+ "| Tokens / Sec: %7.1f | Learning Rate: %6.1e"
)
% (i, n_accum, loss / batch.ntokens, tokens / elapsed, lr)
)
start = time.time()
tokens = 0
del loss
del loss_node
return total_loss / total_tokens, train_state
def train_worker(
gpu,
ngpus_per_node,
vocab_src,
vocab_tgt,
spacy_de,
spacy_en,
config,
is_distributed=False,
):
print(f"Train worker process using GPU: {gpu} for training", flush=True)
if gpu:
torch.cuda.device(gpu)
pad_idx = vocab_tgt["<blank>"]
d_model = 512
model = make_tranformers_model(len(vocab_src), len(vocab_tgt), N=6)
if gpu:
model.cuda(gpu)
module = model
is_main_process = True
if is_distributed:
dist.init_process_group(
"nccl", init_method="env://", rank=gpu, world_size=ngpus_per_node
)
model = DDP(model, device_ids=[gpu])
module = model.module
is_main_process = gpu == 0
criterion = LabelSmoothing(size=len(vocab_tgt), padding_idx=pad_idx, smoothing=0.1)
if gpu:
criterion.cuda(gpu)
train_dataloader, valid_dataloader = create_dataloaders(
gpu,
vocab_src,
vocab_tgt,
spacy_de,
spacy_en,
batch_size=config["batch_size"] // ngpus_per_node,
max_padding=config["max_padding"],
is_distributed=is_distributed,
)
optimizer = torch.optim.Adam(
model.parameters(), lr=config["base_lr"], betas=(0.9, 0.98), eps=1e-9
)
lr_scheduler = LambdaLR(
optimizer=optimizer,
lr_lambda=lambda step: rate(step, d_model, factor=1, warmup=config["warmup"]),
)
train_state = TrainState()
for epoch in range(config["num_epochs"]):
if is_distributed:
# In distributed mode, calling the set_epoch() method at the beginning of each epoch
# before creating the DataLoader iterator is necessary to make shuffling work properly across multiple epochs.
# Otherwise, the same ordering will be always used.
train_dataloader.sampler.set_epoch(epoch)
valid_dataloader.sampler.set_epoch(epoch)
model.train() # Make sure gradient tracking is on, and do a pass over the data
print(f"[GPU{gpu}] Epoch {epoch} Training ====", flush=True)
_, train_state = run_epoch(
(Batch(b[0], b[1], pad_idx) for b in train_dataloader),
model,
SimpleLossCompute(module.generator, criterion),
optimizer,
lr_scheduler,
mode="train+log",
accum_iter=config["accum_iter"],
train_state=train_state,
)
GPUtil.showUtilization()
if is_main_process:
file_path = "%s%.2d.pt" % (config["file_prefix"], epoch)
torch.save(module.state_dict(), file_path)
torch.cuda.empty_cache()
model.eval() # We don't need gradients on to do reporting
print(f"[GPU{gpu}] Epoch {epoch} Validation ====", flush=True)
sloss = run_epoch(
(Batch(b[0], b[1], pad_idx) for b in valid_dataloader),
model,
SimpleLossCompute(module.generator, criterion),
DummyOptimizer(),
DummyScheduler(),
mode="eval",
)
print(sloss)
torch.cuda.empty_cache()
if is_main_process:
file_path = "%sfinal.pt" % config["file_prefix"]
torch.save(module.state_dict(), file_path)
def train_distributed_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config):
ngpus = torch.cuda.device_count()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
print(f"Number of GPUs detected: {ngpus}")
print("Spawning training processes ...")
mp.spawn(
train_worker,
nprocs=ngpus,
args=(ngpus, vocab_src, vocab_tgt, spacy_de, spacy_en, config, True),
)
def train_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config):
if config["distributed"]:
train_distributed_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config)
else:
train_worker(0, 1, vocab_src, vocab_tgt, spacy_de, spacy_en, config, False)
# Train the simple sort task.
def train_copy_task():
print("Traing copy task....")
V = 11
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0)
model = make_tranformers_model(V, V, N=2)
optimizer = torch.optim.Adam(
model.parameters(), lr=0.5, betas=(0.9, 0.98), eps=1e-9
)
lr_scheduler = LambdaLR(
optimizer=optimizer,
lr_lambda=lambda step: rate(
step, model_size=model.src_embed[0].d_model, factor=1.0, warmup=400
),
)
batch_size = 80
for epoch in range(20):
model.train()
run_epoch(
data_gen_copy_task(V, batch_size, 20),
model,
SimpleLossCompute(model.generator, criterion),
optimizer,
lr_scheduler,
mode="train",
)
model.eval()
run_epoch(
data_gen_copy_task(V, batch_size, 5),
model,
SimpleLossCompute(model.generator, criterion),
DummyOptimizer(),
DummyScheduler(),
mode="eval",
)[0]
file_path = "copy_model.pt"
torch.save(model.state_dict(), file_path)
return model
def load_copy_model(training=False):
if training:
model = train_copy_task()
else:
print("Loading copy model....")
model = make_tranformers_model(11, 11, N=2)
model.load_state_dict(torch.load("copy_model.pt"))
return model
def load_trained_model():
config = {
"batch_size": 8, # 32
"distributed": False,
"num_epochs": 1, # 8
"accum_iter": 10,
"base_lr": 1.0,
"max_padding": 72,
"warmup": 3000,
"file_prefix": "multi30k_model_",
}
model_path = "multi30k_model_final.pt"
spacy_de, spacy_en = load_tokenizers()
vocab_src, vocab_tgt = load_vocab(spacy_de, spacy_en)
if not exists(model_path):
train_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config)
model = make_tranformers_model(len(vocab_src), len(vocab_tgt), N=6)
model.load_state_dict(torch.load("multi30k_model_final.pt"))
return model
if __name__ == "__main__":
# model = load_copy_model()
# model.eval()
# src = torch.randint(1, 11, size=(1, 10))
# src[:, 0] = 0
# print(f"Input: \n{src[:, 1:]}")
# # print(f"Expect: {torch.sort(src)[0]}")
# max_len = src.shape[1]
# src_mask = torch.ones(1, 1, max_len)
# print(
# f"Output: \n{greedy_decode(model, src, src_mask, max_len=max_len, start_symbol=0)}"
# )
# print(
# f"Output beam: \n{beam_search(model, src, src_mask, max_len=max_len, start_symbol=0, beam_size = 2)}"
# )
model = load_trained_model()