-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
143 lines (126 loc) · 4.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import logging
import os
import sys
import time
from dataset import load_data_from_dir, LD3Dataset
from trainer import LD3Trainer, ModelConfig, TrainingConfig
from utils import (
create_desc,
is_trained,
get_solvers,
parse_arguments,
adjust_hyper,
save_arguments_to_yaml,
)
from models import prepare_stuff
def setup_logging(log_dir):
"""
checked!
"""
# Reset logging configuration
logging.shutdown()
import importlib
importlib.reload(logging)
log_format = "%(asctime)s %(message)s"
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format=log_format,
datefmt="%m/%d %I:%M:%S %p",
)
fh = logging.FileHandler(os.path.join(log_dir, "log.txt"))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
return logging
def main(args):
if args.use_ema:
print("Auto update use_ema to False for training")
args.use_ema = False
wrapped_model, _, decoding_fn, noise_schedule, latent_resolution, latent_channel, _, _ = prepare_stuff(args)
adjust_hyper(args, latent_resolution, latent_channel)
desc = create_desc(args)
log_dir = os.path.join(args.log_path, desc)
if is_trained(log_dir):
print("Skip training")
return
else:
print("The model hasn't been trained yet. Perform training")
os.makedirs(log_dir, exist_ok=True)
save_arguments_to_yaml(args, os.path.join(log_dir, "config.yml"))
setup_logging(log_dir)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
solver, steps, solver_extra_params = get_solvers(
args.solver_name,
NFEs=args.steps,
order=args.order,
noise_schedule=noise_schedule,
unipc_variant=args.unipc_variant,
)
latents, targets, conditions, unconditions = load_data_from_dir(
data_folder=args.data_dir, limit=args.num_train + args.num_valid
)
ori_latents = [latent.clone() for latent in latents]
train_dataset = LD3Dataset(
ori_latents[: args.num_train],
latents[: args.num_train],
targets[: args.num_train],
conditions[: args.num_train],
unconditions[: args.num_train],
)
if args.num_valid > 0 :
valid_dataset = LD3Dataset(
ori_latents[args.num_train :],
latents[args.num_train :],
targets[args.num_train :],
conditions[args.num_train :],
unconditions[args.num_train :],
)
else:
valid_dataset = train_dataset
training_config = TrainingConfig(
train_data=train_dataset,
valid_data=valid_dataset,
train_batch_size=args.main_train_batch_size,
valid_batch_size=args.main_valid_batch_size,
lr_time_1=args.lr_time_1,
lr_time_2=args.lr_time_2,
shift_lr=args.shift_lr,
shift_lr_decay=args.shift_lr_decay,
min_lr_time_1=args.min_lr_time_1,
min_lr_time_2=args.min_lr_time_2,
win_rate=args.win_rate,
patient=args.patient,
lr_time_decay=args.lr_time_decay,
momentum_time_1=args.momentum_time_1,
weight_decay_time_1=args.weight_decay_time_1,
loss_type=args.loss_type,
visualize=args.visualize,
no_v1=args.no_v1,
prior_timesteps=args.gits_ts,
match_prior=args.match_prior,
)
model_config = ModelConfig(
net=wrapped_model,
decoding_fn=decoding_fn,
noise_schedule=noise_schedule,
solver=solver,
solver_name=args.solver_name,
order=args.order,
steps=steps,
prior_bound=args.prior_bound,
resolution=latent_resolution,
channels=latent_channel,
time_mode=args.time_mode,
solver_extra_params=solver_extra_params,
snapshot_path=log_dir,
device=device,
)
trainer = LD3Trainer(model_config, training_config)
start = time.time()
trainer.train(args.training_rounds_v1, args.training_rounds_v2)
end = time.time()
logging.info(f"Training time: {end - start}")
if __name__ == "__main__":
args = parse_arguments()
main(args)