-
-
Notifications
You must be signed in to change notification settings - Fork 192
/
Copy pathvideo_inference.py
97 lines (78 loc) · 2.86 KB
/
video_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import cv2
from matplotlib import pyplot as plt
from loss.loss_discriminator import *
from loss.loss_generator import *
from network.blocks import *
from network.model import *
from webcam_demo.webcam_extraction_conversion import *
from params.params import path_to_chkpt
from tqdm import tqdm
"""Init"""
#Paths
path_to_model_weights = 'finetuned_model.tar'
path_to_embedding = 'e_hat_video.tar'
path_to_mp4 = 'test_vid2.webm'
device = torch.device("cuda:0")
cpu = torch.device("cpu")
checkpoint = torch.load(path_to_model_weights, map_location=cpu)
e_hat = torch.load(path_to_embedding, map_location=cpu)
e_hat = e_hat['e_hat'].to(device)
G = Generator(256, finetuning=True, e_finetuning=e_hat)
G.eval()
"""Training Init"""
G.load_state_dict(checkpoint['G_state_dict'])
G.to(device)
"""Main"""
print('PRESS Q TO EXIT')
cap = cv2.VideoCapture(path_to_mp4)
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
ret = True
i = 0
size = (256*3,256)
#out = cv2.VideoWriter('project.mp4',cv2.VideoWriter_fourcc('M','P','4','2'), 30, size)
video = cv2.VideoWriter('project.mp4',cv2.VideoWriter_fourcc(*'DIVX'), fps, size)
with torch.no_grad():
while ret:
x, g_y, ret = generate_landmarks(cap=cap, device=device, pad=50)
if ret:
g_y = g_y.unsqueeze(0)/255
x = x.unsqueeze(0)/255
#forward
# Calculate average encoding vector for video
#f_lm_compact = f_lm.view(-1, f_lm.shape[-4], f_lm.shape[-3], f_lm.shape[-2], f_lm.shape[-1]) #BxK,2,3,224,224
#train G
x_hat = G(g_y, e_hat)
plt.clf()
out1 = x_hat.transpose(1,3)[0]
#for img_no in range(1,x_hat.shape[0]):
# out1 = torch.cat((out1, x_hat.transpose(1,3)[img_no]), dim = 1)
out1 = out1.to(cpu).numpy()
#plt.imshow(out1)
#plt.show()
#plt.clf()
out2 = x.transpose(1,3)[0]
#for img_no in range(1,x.shape[0]):
# out2 = torch.cat((out2, x.transpose(1,3)[img_no]), dim = 1)
out2 = out2.to(cpu).numpy()
#plt.imshow(out2)
#plt.show()
#plt.clf()
out3 = g_y.transpose(1,3)[0]
#for img_no in range(1,g_y.shape[0]):
# out3 = torch.cat((out3, g_y.transpose(1,3)[img_no]), dim = 1)
out3 = out3.to(cpu).numpy()
#plt.imshow(out3)
#plt.show()
fake = cv2.cvtColor(out1*255, cv2.COLOR_BGR2RGB)
me = cv2.cvtColor(out2*255, cv2.COLOR_BGR2RGB)
landmark = cv2.cvtColor(out3*255, cv2.COLOR_BGR2RGB)
img = np.concatenate((me, landmark, fake), axis=1)
img = img.astype('uint8')
video.write(img)
i+=1
print(i,'/',n_frames)
cap.release()
video.release()
"""cv2.destroyAllWindows()"""