-
-
Notifications
You must be signed in to change notification settings - Fork 192
/
Copy pathfinetuning_training.py
221 lines (175 loc) · 7.48 KB
/
finetuning_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
import os
from datetime import datetime
from matplotlib import pyplot as plt
import matplotlib
import numpy as np
from dataset.dataset_class import FineTuningImagesDataset, FineTuningVideoDataset
from network.model import *
from loss.loss_discriminator import *
from loss.loss_generator import *
from params.params import K, path_to_chkpt, path_to_backup, path_to_Wi, batch_size, path_to_preprocess, frame_shape
"""Hyperparameters and config"""
display_training = True
if not display_training:
matplotlib.use('agg')
device = torch.device("cuda:0")
cpu = torch.device("cpu")
path_to_embedding = 'e_hat_video.tar'
path_to_save = 'finetuned_model.tar'
path_to_video = 'examples/fine_tuning/test_video.mp4'
path_to_images = 'examples/fine_tuning/test_images'
"""Create dataset and net"""
choice = ''
while choice != '0' and choice != '1':
choice = input('What source to finetune on?\n0: Video\n1: Images\n\nEnter number\n>>')
if choice == '0': #video
dataset = FineTuningVideoDataset(path_to_video, device)
else: #Images
dataset = FineTuningImagesDataset(path_to_images, device)
dataLoader = DataLoader(dataset, batch_size=2, shuffle=False)
e_hat = torch.load(path_to_embedding, map_location=cpu)
e_hat = e_hat['e_hat']
G = Generator(256, finetuning = True, e_finetuning = e_hat)
D = Discriminator(dataset.__len__(), path_to_Wi, finetuning = True, e_finetuning = e_hat)
G.train()
D.train()
optimizerG = optim.Adam(params = G.parameters(), lr=5e-5)
optimizerD = optim.Adam(params = D.parameters(), lr=2e-4)
"""Criterion"""
criterionG = LossGF(VGGFace_body_path='Pytorch_VGGFACE_IR.py',
VGGFace_weight_path='Pytorch_VGGFACE.pth', device=device)
criterionDreal = LossDSCreal()
criterionDfake = LossDSCfake()
"""Training init"""
epochCurrent = epoch = i_batch = 0
lossesG = []
lossesD = []
i_batch_current = 0
num_epochs = 40
#Warning if checkpoint inexistant
if not os.path.isfile(path_to_chkpt):
print('ERROR: cannot find checkpoint')
if os.path.isfile(path_to_save):
path_to_chkpt = path_to_save
"""Loading from past checkpoint"""
checkpoint = torch.load(path_to_chkpt, map_location=cpu)
checkpoint['D_state_dict']['W_i'] = torch.rand(512, 32) #change W_i for finetuning
G.load_state_dict(checkpoint['G_state_dict'])
D.load_state_dict(checkpoint['D_state_dict'], strict = False)
"""Change to finetuning mode"""
G.finetuning_init()
D.finetuning_init()
G.to(device)
D.to(device)
"""Training"""
batch_start = datetime.now()
cont = True
while cont:
for epoch in range(num_epochs):
for i_batch, (x, g_y) in enumerate(dataLoader):
with torch.autograd.enable_grad():
#zero the parameter gradients
optimizerG.zero_grad()
optimizerD.zero_grad()
#forward
#train G and D
x_hat = G(g_y, e_hat)
r_hat, D_hat_res_list = D(x_hat, g_y, i=0)
with torch.no_grad():
r, D_res_list = D(x, g_y, i=0)
lossG = criterionG(x, x_hat, r_hat, D_res_list, D_hat_res_list)
lossG.backward(retain_graph=False)
optimizerG.step()
#train D
optimizerD.zero_grad()
x_hat.detach_().requires_grad_()
r_hat, D_hat_res_list = D(x_hat, g_y, i=0)
r, D_res_list = D(x, g_y, i=0)
lossDfake = criterionDfake(r_hat)
lossDreal = criterionDreal(r)
lossD = lossDreal + lossDfake
lossD.backward(retain_graph=False)
optimizerD.step()
#train D again
optimizerG.zero_grad()
optimizerD.zero_grad()
r_hat, D_hat_res_list = D(x_hat, g_y, i=0)
r, D_res_list = D(x, g_y, i=0)
lossDfake = criterionDfake(r_hat)
lossDreal = criterionDreal(r)
lossD = lossDreal + lossDfake
lossD.backward(retain_graph=False)
optimizerD.step()
# Output training stats
if epoch % 10 == 0:
batch_end = datetime.now()
avg_time = (batch_end - batch_start) / 10
print('\n\navg batch time for batch size of', x.shape[0],':',avg_time)
batch_start = datetime.now()
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(y)): %.4f'
% (epoch, num_epochs, i_batch, len(dataLoader),
lossD.item(), lossG.item(), r.mean(), r_hat.mean()))
"""
plt.clf()
out = x_hat.transpose(1,3)[0]
for img_no in range(1,x_hat.shape[0]):
out = torch.cat((out, x_hat.transpose(1,3)[img_no]), dim = 1)
out = out.type(torch.int32).to(cpu).numpy()*255
plt.imshow(out)
plt.show()
plt.clf()
out = x.transpose(1,3)[0]
for img_no in range(1,x.shape[0]):
out = torch.cat((out, x.transpose(1,3)[img_no]), dim = 1)
out = out.type(torch.int32).to(cpu).numpy()*255
plt.imshow(out)
plt.show()
plt.clf()
out = g_y.transpose(1,3)[0]
for img_no in range(1,g_y.shape[0]):
out = torch.cat((out, g_y.transpose(1,3)[img_no]), dim = 1)
out = out.type(torch.int32).to(cpu).numpy()*255
plt.imshow(out)
plt.show()
lossesD.append(lossD.item())
lossesG.append(lossG.item())"""
if display_training:
plt.clf()
out = (x_hat[0]*255).transpose(0,2)
for img_no in range(1,x_hat.shape[0]):
out = torch.cat((out, (x_hat[img_no]*255).transpose(0,2)), dim = 1)
out = out.type(torch.int32).to(cpu).numpy()
fig = out
plt.clf()
out = (x[0]*255).transpose(0,2)
for img_no in range(1,x.shape[0]):
out = torch.cat((out, (x[img_no]*255).transpose(0,2)), dim = 1)
out = out.type(torch.int32).to(cpu).numpy()
fig = np.concatenate((fig, out), 0)
plt.clf()
out = (g_y[0]*255).transpose(0,2)
for img_no in range(1,g_y.shape[0]):
out = torch.cat((out, (g_y[img_no]*255).transpose(0,2)), dim = 1)
out = out.type(torch.int32).to(cpu).numpy()
fig = np.concatenate((fig, out), 0)
plt.imshow(fig)
plt.xticks([])
plt.yticks([])
plt.draw()
plt.pause(0.001)
num_epochs = int(input('Num epoch further?\n'))
cont = num_epochs != 0
print('Saving finetuned model...')
torch.save({
'epoch': epoch,
'lossesG': lossesG,
'lossesD': lossesD,
'G_state_dict': G.state_dict(),
'D_state_dict': D.state_dict(),
'optimizerG_state_dict': optimizerG.state_dict(),
'optimizerD_state_dict': optimizerD.state_dict(),
}, path_to_save)
print('...Done saving latest')