-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstep_2_text.py
93 lines (63 loc) · 1.96 KB
/
step_2_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from step1_text import get_textual_features
import os
import cPickle
import numpy as np
import pandas as pd
# from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# from sklearn.neural_network import MLPClassifier
def load_labels():
class_info = pd.read_csv("ImageCLEFmed2009_train_codes.02.csv")
get_class = {}
classes = set()
path = "dataset/ImageCLEFmed2009_train.02/"
for img_id,img_class in zip(class_info["image_id"],class_info["05_class"]):
get_class[path+str(img_id)] = img_class
classes.add(img_class)
return get_class,classes
def one_hot_text():
textual_data,textual_vocab = get_textual_features()
print textual_vocab
get_class,classes = load_labels()
# print classes
print len(classes)
X = np.zeros((len(textual_data),textual_vocab))
Y = np.zeros((len(textual_data)))
i=0
# print textual_data
for path, words in textual_data.iteritems():
for j in words:
X[i][j] = 1
label = get_class[path]
if(label=='\\N'):
Y[i] = 0
else:
Y[i] = int(label)
# print X[i]
# print Y
i+=1
return X,Y
def get_svm():
# model = GaussianNB()
model_cache_file = os.path.join('cache', 'svm.pkl')
if os.path.isfile(model_cache_file):
print('Loading svm from : ' + model_cache_file)
with open(model_cache_file, 'rb') as f:
model = cPickle.load(f)
print 'done'
return model
else:
model = SVC(probability=True)
X,Y = one_hot_text()
print 'training ...'
model.fit(X,Y)
print model.score(X,Y)
print('Saving trained model to: ' + model_cache_file)
with open(model_cache_file, 'wb') as f:
cPickle.dump(model, f)
print 'Done!'
return model
if __name__=='__main__':
# one_hot_text()
train_mlp()