-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompaction.py
109 lines (84 loc) · 3.24 KB
/
compaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import random
import time
import threading
class ArrayCompaction:
def __init__(self, data_arr, frag_per) -> None:
self.data_arr = data_arr
self.frag_per = frag_per
pass
def insert_arr_continuous(self):
while True:
last_sub_arr = self.data_arr[-1]
if len(last_sub_arr) < 5:
self.data_arr[-1].append(random.randint(40, 55))
else:
self.data_arr.append([random.randint(40, 55)])
time.sleep(2)
print(self.data_arr)
def compaction_process(self):
index = 0
log_num = 0
for sub_arr_idx in range(len(self.data_arr)):
if self.compaction_per_log[log_num] < self.frag_per:
index += len(self.data_arr[sub_arr_idx])
else:
sub_arr_new = []
local_index = 0
for ele in self.data_arr[sub_arr_idx]:
if index >= self.last_index_map[ele]:
sub_arr_new.append(ele)
local_index += 1
index += 1
if len(sub_arr_new) > 0:
self.data_arr[sub_arr_idx] = sub_arr_new
else:
self.data_arr.remove(sub_arr_idx)
log_num += 1
print("Compacted log = ", self.data_arr)
time.sleep(10)
def compute_compaction_per(self):
while True:
self.last_index_map = dict()
index = 0
for subarr in self.data_arr:
for ele in subarr:
self.last_index_map[ele] = index
index += 1
index = 0
self.compaction_per_log = []
for subarr in self.data_arr:
stale_count = 0
for ele in subarr:
if index < self.last_index_map[ele]:
stale_count += 1
index += 1
if len(subarr) > 0:
self.compaction_per_log.append(float(stale_count)/float(len(subarr)))
print("Compaction per log segment = ", self.compaction_per_log)
time.sleep(2)
def change_frag_per(self, new_frag_val):
if new_frag_val > 1 or new_frag_val <= 0:
print("Value should be in between 0 and 1 (exclusive)")
return
self.frag_per = new_frag_val
print("New frag value has been assigned")
def main(self):
for i in range(5):
sub_arr = []
for j in range(5):
ele = random.randint(40, 55)
sub_arr.append(ele)
self.data_arr.append(sub_arr)
print(self.data_arr)
t1 = threading.Thread(target=self.insert_arr_continuous)
t2 = threading.Thread(target=self.compute_compaction_per)
t3 = threading.Thread(target=self.compaction_process)
t1.start()
t2.start()
t3.start()
# print(com_per_log)
# compacted_log = compaction_process(data, last_index_map, com_per_log, frag_per)
# print("Compacted log = ", compacted_log)
if __name__ == "__main__":
obj = ArrayCompaction([], 0.5)
obj.main()