-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainMesh.py
461 lines (312 loc) · 17.2 KB
/
trainMesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import os
import sys
import argparse
from utils import dataloader
import torch
import torchvision
import cv2
from models.render import Render_SMPL,Render_TEX
from models.mesh import SMPL_Mesh,TEX_Mesh
from models.smpl import SMPL,load_smpl
from models.meshNet import MeshRefinementStage, MeshRefinementHead
from models.textureNet import TextureRefinementStage,discriminator
from utils.mesh_tools import write_obj
from utils.SSIM import SSIM
from models.p2p_networks import discriminator_mesh
from utils import arguments
from utils.preprocess_noise import Dilation2d
import random
from pytorch3d.io import save_obj
from pytorch3d.utils import ico_sphere
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.loss import (
chamfer_distance,
mesh_edge_loss,
mesh_laplacian_smoothing,
mesh_normal_consistency,
)
from pytorch3d.structures import Meshes
from pytorch3d.transforms import Transform3d
from torch.utils.tensorboard import SummaryWriter
from torch.optim import lr_scheduler
from torch.autograd import Variable
import datetime
import yaml
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import numpy as np
from tqdm import tqdm
import config
import pdb
import PIL.Image
from torchvision.transforms import ToTensor
import io
torch.backends.cudnn.benchmark = True
def plot_grad_flow(named_parameters):
'''Plots the gradients flowing through different layers in the net during training.
Can be used for checking for possible gradient vanishing / exploding problems.
Usage: Plug this function in Trainer class after loss.backwards() as
"plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow'''
ave_grads = []
max_grads= []
layers = []
for n, p in named_parameters:
if(p.requires_grad) and ("bias" not in n):
layers.append(n)
if p.grad is None:
ave_grads.append(0)
max_grads.append(0)
print("NONE!")
else:
ave_grads.append(p.grad.abs().mean())
max_grads.append(p.grad.abs().max())
plt.bar(np.arange(len(max_grads)), max_grads, alpha=0.1, lw=1, color="c")
plt.bar(np.arange(len(max_grads)), ave_grads, alpha=0.1, lw=1, color="b")
plt.hlines(0, 0, len(ave_grads)+1, lw=2, color="k" )
plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical")
plt.xlim(left=0, right=len(ave_grads))
plt.ylim(bottom = -0.001, top=0.02) # zoom in on the lower gradient regions
plt.xlabel("Layers")
plt.ylabel("average gradient")
plt.title("Gradient flow")
plt.grid(True)
plt.legend([Line2D([0], [0], color="c", lw=4),
Line2D([0], [0], color="b", lw=4),
Line2D([0], [0], color="k", lw=4)], ['max-gradient', 'mean-gradient', 'zero-gradient'])
buf = io.BytesIO()
plt.savefig(buf, format='jpeg')
buf.seek(0)
return buf
def get_grad_img(model):
plot_buf = plot_grad_flow(model.named_parameters())
im_grads = PIL.Image.open(plot_buf)
im_grads = ToTensor()(im_grads).unsqueeze(0)
return im_grads
# Losses to smooth / regularize the mesh shape
def update_mesh_shape_prior_losses(src_mesh,mesh,loss,batch_size,device):
# and (b) the edge length of the predicted mesh
#loss["edge"] = mesh_edge_loss(mesh)
'''edges_packed = mesh.edges_packed()
verts_packed = mesh.verts_packed()
verts_edges = verts_packed[edges_packed]
v0, v1 = verts_edges.unbind(1)
edge_size = ((v0 - v1).norm(dim=1, p=2)) - 0.1
m = torch.nn.ReLU()
loss["edge"] = (m(edge_size)).sum()
#loss["edge"] = mesh_edge_loss(mesh)'''
# mesh normal consistency
loss["normal"] = mesh_normal_consistency(mesh)
# mesh laplacian smoothing
loss["laplacian"] = mesh_laplacian_smoothing(mesh, method="uniform")
def draw_weights(model_name, model, summary, epoch):
if model_name == 'texture':
for i, (param_name, param) in enumerate(model.named_parameters()):
summary.add_histogram(f"{model_name}/channel_0", param[..., 0].flatten().data.cpu(), epoch)
summary.add_histogram(f"{model_name}/channel_1", param[..., 1].flatten().data.cpu(), epoch)
summary.add_histogram(f"{model_name}/channel_2", param[..., 2].flatten().data.cpu(), epoch)
if model_name == 'mesh':
for i, (param_name, param) in enumerate(model.named_parameters()):
try:
_, stage, _, gconv, weight, weight_type = tuple(param_name.split('.'))
summary.add_histogram(f"{model_name}/stage{stage}/gconv_{gconv}_{weight}.{weight_type}", param.data.cpu(), epoch)
except ValueError:
_, stage, _, weight_type = tuple(param_name.split('.'))
summary.add_histogram(f"{model_name}/stage{stage}/verts_offset.{weight_type}", param.data.cpu(), epoch)
def save_model(state_dict, path):
torch.save(state_dict, path)
def read_model(path, device):
return torch.load(path, map_location = device)
#python trainMesh.py -d /media/thiagoluange/SAMSUNG/ -w 1 -rss 128 -rsh 75 -b 1
#python trainMesh.py -d /media/thiagoluange/SAMSUNG/AIST/ -w 1 -rss 256 -rsh 512 -b 1 -st aist -g male -s d -p 04
def main():
## ARGS
args = arguments.get_args()
## TEXTURE PATH: "/srv/storage/datasets/thiagoluange/dd_dataset/S1P0/tex.jpg"
## SUMMARY & CHECKPOINTS
checkpoint_path = args.dataset_path + '/checkpoints_meshNet-iccv_1.1/'
summary_dir = args.dataset_path + '/summaries_meshNet-iccv_1.1/'
dataset_person = f"{args.source}{args.person}"
date = datetime.datetime.now()
time_init = f"{date.day}-{date.month}-{date.year}_{date.hour}:{date.minute}:{date.second}"
if args.flag is not None:
time_init = "{}_{}".format(time_init, args.flag)
summary_path = f"{summary_dir}/{dataset_person}/{args.experiment_name}_meshNet_lr_{args.lr}-le_{args.loss_edge}-lss_{args.loss_ssim}-ls_{args.loss_sil}-ll_{args.loss_lap}-ln_{args.loss_nor}/batch_{args.batch_size}/epochs_{args.epochs}/{time_init}/"
weights_path = f"{checkpoint_path}/{dataset_person}/{args.experiment_name}_meshNet_lr_{args.lr}-le_{args.loss_edge}-lss_{args.loss_ssim}-ls_{args.loss_sil}-ll_{args.loss_lap}-ln_{args.loss_nor}/batch_{args.batch_size}/epochs_{args.epochs}/{time_init}/"
os.makedirs(summary_path, exist_ok=True)
os.makedirs(weights_path, exist_ok=True)
summary = SummaryWriter(log_dir=summary_path)
## GETTING DEVICE
if(torch.cuda.is_available()):
device = torch.device("cuda:{}".format(args.device))
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
print(f"RUNNING ON {device}")
## CREATE DATALOADER
#dataloaders = dataloader.get_dataloaders(args)
dataloaders = dataloader.get_dataloaders(args, phase = "train")
#dataloader_test = dataloader.get_dataloaders(args, phase = "test")
## RECOVERING FIXED PARAMS
dataset = dataloaders['train'].dataset
faces_mesh = torch.from_numpy(np.load(config.SMPL_FACES)).to(device)
f = dataset.f
'''
NOTE: Atualmente img_shape recebe o tamanho da imagem original.
Talvez tenha que mudar para tamanho da imagem cropada.
Seria pegar a menor dimensao para montar imagem quadrada? Thiago: Deve receber o tamanho original mesmo, ele que defini a camera
'''
img_shape = dataset.img_shape
## LOAD TEXTURE
txt_img = cv2.resize(cv2.imread(config.TEX_MAP, cv2.IMREAD_UNCHANGED),(256,256))
'''
NOTE: Nao sei o quanto o tamanho da textura vai influenciar na qualidade e no peso da rede
'''
txt_img = torch.from_numpy(txt_img[:,:,::-1].astype('float64')/255.0).to(device)
### LOADING MODELS
## LOAD MESH MODEL
with open("models/model_cfg.yaml", 'r') as cfg_file:
model_cfgs = yaml.safe_load(cfg_file)
model_cfgs["device"] = device
model_cfgs["batch_size"] = args.batch_size
model = MeshRefinementHead(model_cfgs).to(device)
'''if(args.pretrained_path_model is not None):
model.load_state_dict(read_model(args.pretrained_path_model, device))
print("loaded weights sucessfully")'''
## LOAD RENDER MODEL
if args.style == "mt":
my_render_soft = Render_SMPL(f, img_shape, args.render_size_soft, device).to(device)
else:
my_render_soft = Render_SMPL(f, img_shape, args.render_size_soft, device,eye=[[0,0,0]],at=[[0,0,-1]], up=[[0, 1, 0]]).to(device)
## MODELS OPTIMIZER
optimizer_mesh = torch.optim.AdamW([
{'params': model.parameters()}
# {'params': model_tex.parameters()}
], lr=args.lr, betas=(0.5, 0.999))
#we keep the same learning rate for the first args.epochs/2
#and linearly decay the rate to zero over the args.epochs/2
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch - args.epochs/2) / float(args.epochs/2 + 1)
return lr_l
scheduler_mesh = lr_scheduler.LambdaLR(optimizer_mesh, lr_lambda=lambda_rule)
## SETTING LOSSES
losses = {"silhouette": {"weight": args.loss_sil},
"ssim": {"weight": args.loss_ssim},
"edge": {"weight": args.loss_edge},
"normal": {"weight": args.loss_nor},
"laplacian": {"weight": args.loss_lap},
}
step = 0
best_loss = sys.maxsize
#dataset_test = list(dataloader_test["test"])
'''model_tex_D = discriminator_mesh(1).to(device)
model_tex_D.weight_init(mean=0.0, std=0.02)
optimizer_tex_D = torch.optim.AdamW([
#{'params': model.parameters()}
{'params': model_tex_D.parameters()}
], lr=args.lr_tex/args.lr_d_factor, betas=(0.5, 0.999))
scheduler_tex_D = lr_scheduler.LambdaLR(optimizer_tex_D, lr_lambda=lambda_rule)
model_tex_D.train()
BCE_loss = torch.nn.MSELoss().to(device)'''
## MODELS TRAIN
model.train()
# create loss
model_ssim = SSIM().to(device)
#cv2.imwrite(checkpoint_path + "/image_step_%09d_in"%step + ".jpg", img_hard.permute(0, 2, 3, 1).cpu().detach().numpy()[0,face_posi[1] - 40:face_posi[1] + 40,face_posi[0] - 40:face_posi[0] + 40,-1::-1]*255)
my_render_hard = Render_SMPL(f, img_shape, args.render_size_soft, device, "hard").to(device)
my_dilation = Dilation2d(1,1,args.dilate_kernel,device)
for epoch in range(args.epochs):
print(f"EPOCH: {epoch}/{args.epochs}")
for idx, (vertices, seg_soft,seg_hard,img_soft,img_hard,trans,global_mat,f_now,face_posi) in enumerate(tqdm(dataloaders['train'])):
############ Initialize optimizer mesh
optimizer_mesh.zero_grad()
seg_soft = seg_soft.to(device)
seg_soft_d = my_dilation(seg_soft)
trans = trans.to(device)
img_soft = img_soft.to(device)
batch_size = vertices.shape[0]
## CREATE MESH
vertices = [vert.to(device) for vert in vertices]
faces = [faces_mesh.to(device) for i in range(len(vertices))] ## O numero de amostras no batch sempre sera batch_size?
src_mesh = Meshes(verts=vertices, faces=faces).to(device)
# Deform the mesh
subdivide = False
deformed_mesh = model(src_mesh, subdivide)
#pdb.set_trace()
it_size = int(deformed_mesh.verts_packed().shape[0]/len(vertices))
deformed_meshes = [deformed_mesh.verts_packed()[idx : idx + it_size] for idx in range(0, len(deformed_mesh.verts_packed()), it_size)]
tex_maps = []
for i in range(len(vertices)):
tex_maps.append(txt_img)
tex_map = torch.stack(tex_maps)
render_mesh = SMPL_Mesh(deformed_meshes, faces, tex_map, device)
#Losses to smooth /regularize the mesh shape
loss = {k: torch.tensor(0.0, device=device) for k in losses}
update_mesh_shape_prior_losses(src_mesh,deformed_mesh,loss,batch_size,device)
S = torch.ones(f_now.shape[0],3)
for i in range(f_now.shape[0]):
S[i,2] = f/f_now[i]
images_predicted = my_render_soft(render_mesh.to(device), trans,global_mat,S)
num_views_per_iteration = img_soft.shape[0]
predicted_silhouette = images_predicted[..., 3:].to(device)
predicted_seg = (torch.where(predicted_silhouette < 0.001, predicted_silhouette, torch.ones_like(predicted_silhouette))) ## NEW LINE
loss_silhouette = torch.tensor(1.0, device=device) - torch.norm(predicted_silhouette*seg_soft_d.permute(0, 2, 3, 1),1)/torch.norm(predicted_silhouette + seg_soft_d.permute(0, 2, 3, 1) - predicted_silhouette*seg_soft_d.permute(0, 2, 3, 1),1)
loss_ssim = 1.0 - model_ssim(seg_soft_d,predicted_silhouette.permute(0, 3, 1, 2))
loss["ssim"] += loss_ssim
loss["silhouette"] += loss_silhouette
# Weighted sum of the losses
sum_loss = torch.tensor(0.0, device=device)
for k, l in loss.items():
sum_loss += l * losses[k]["weight"]
# Print the losses
#sum_loss = sum_loss
#import pdb
#pdb.set_trace()
#cv2.imwrite(checkpoint_path + "/image_step_%09d_in"%step + ".jpg", img_soft.permute(0, 2, 3, 1).cpu().detach().numpy()[0,:,:,-1::-1]*255)
#cv2.imwrite(checkpoint_path + "/image_step_%09d_in"%step + ".jpg", img_hard.permute(0, 2, 3, 1).cpu().detach().numpy()[0,face_posi[1] - 20:face_posi[1] + 20,face_posi[0] - 20:face_posi[0] + 20,-1::-1]*255)
#cv2.imwrite(checkpoint_path + "/seg_step_%09d_in"%step + ".png", seg_soft.permute(0, 2, 3, 1).detach().numpy()[0,:,:,:]*255)
#cv2.imwrite(checkpoint_path + "/image_step_%09d_out"%step + ".jpg", images_predicted[..., :3].cpu().detach().numpy()[0,:,:,-1::-1]*255)
#cv2.imwrite(checkpoint_path + "/seg_step_%09d_out"%step + ".png", images_predicted[..., 3:].detach().numpy()[0,:,:,:]*255)
#cv2.imwrite(checkpoint_path + "/seg_step_%09d_in_2"%step + ".png", seg_soft.permute(0, 2, 3, 1).detach().numpy()[0,:,:,:]*255)
#cv2.imwrite(checkpoint_path + "/image_step_%09d_out_2"%step + ".jpg", images_predicted[..., :3].cpu().detach().numpy()[0,:,:,-1::-1]*255)
#cv2.imwrite(checkpoint_path + "/seg_step_%09d_out_2"%step + ".png", images_predicted[..., 3:].detach().numpy()[0,:,:,:]*255)
#out_vert,out_faces = render_mesh.get_mesh_verts_faces(0)
#save_obj(checkpoint_path + "/model_%09d"%step + ".obj",out_vert,out_faces)
# Optimization step
sum_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 2)
optimizer_mesh.step()
if step%args.delta_test == 0:
grad_img = get_grad_img(model)
step = step + 1
summary.add_scalar('Metrics/SSIM', loss["ssim"].detach().data.tolist(), step)
summary.add_scalar('Metrics/EDGE', loss["edge"].detach().data.tolist(), step)
summary.add_scalar('Metrics/Silhouette', loss["silhouette"].detach().data.tolist(), step)
summary.add_scalar('Metrics/Normal', loss["normal"].detach().data.tolist(), step)
summary.add_scalar('Metrics/Laplacian', loss["laplacian"].detach().data.tolist(), step)
summary.add_scalar('Metrics/SUM', sum_loss.detach().data.tolist(), step)
'''summary.add_scalar('Metrics/gen_loss', gen_loss.detach().data.tolist(), step)
summary.add_scalar('Metrics/D_train_loss', D_train_loss.detach().data.tolist(), step)'''
if step%args.delta_test == 0:
## DRAW WEIGHTS HISTOGRAMS
#draw_weights('mesh', model, summary, epoch)
## WRITE IMAGES
images_predicted = my_render_hard(render_mesh.to(device), trans,global_mat,S)
predicted_sil = images_predicted[..., 3:].permute(0, 3, 1, 2) > 0.0
predicted_rgb = images_predicted[..., :3].permute(0, 3, 1, 2)
plots_idxs = 0
summary.add_images('Ground Truth/SIL', seg_soft.detach(), global_step=step, walltime=None)
summary.add_images('Ground Truth/RGB', img_soft.detach(), global_step=step, walltime=None)
summary.add_images('Predicted/RGB', predicted_rgb.detach(), global_step=step, walltime=None)
summary.add_images('Predicted/SIL', predicted_sil.detach(), global_step=step, walltime=None)
summary.add_images('Grads/MESH', grad_img, global_step=step, walltime=None)
## TEST PHASE
## VOLTAR IDENTACAO
if (epoch + 1) % args.save_delta == 0 or (epoch + 1) == args.epochs:
print("saving model ...")
save_model(model.state_dict(), "{}_model{}.pth".format(weights_path, epoch))
scheduler_mesh.step()
'''scheduler_tex_D.step()'''
if __name__ == "__main__":
main()