forked from dshamlin98/dshamlin98.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrdinal and BMS comparison.html
1908 lines (1907 loc) · 196 KB
/
Ordinal and BMS comparison.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<style>
table, th, td {
border: 1px solid black;
}
</style>
</head>
<body>
<table style="width:100%">
<tr><th>Ordinal</th><th>BMS</th></tr>
<tr><td>0</td><td></td></tr>
<tr><td>1</td><td>(0)</td></tr>
<tr><td>2</td><td>(0)(0)</td></tr>
<tr><td>3</td><td>(0)(0)(0)</td></tr>
<tr><td>4</td><td>(0)(0)(0)(0)</td></tr>
<tr><td>5</td><td>(0)(0)(0)(0)(0)</td></tr>
<tr><td>6</td><td>(0)(0)(0)(0)(0)(0)</td></tr>
<tr><td>ω</td><td>(0)(1)</td></tr>
<tr><td>ω+1</td><td>(0)(1)(0)</td></tr>
<tr><td>ω+2</td><td>(0)(1)(0)(0)</td></tr>
<tr><td>ω+3</td><td>(0)(1)(0)(0)(0)</td></tr>
<tr><td>ω+4</td><td>(0)(1)(0)(0)(0)(0)</td></tr>
<tr><td>ω+5</td><td>(0)(1)(0)(0)(0)(0)(0)</td></tr>
<tr><td>ω2</td><td>(0)(1)(0)(1)</td></tr>
<tr><td>ω2+1</td><td>(0)(1)(0)(1)(0)</td></tr>
<tr><td>ω2+2</td><td>(0)(1)(0)(1)(0)(0)</td></tr>
<tr><td>ω2+3</td><td>(0)(1)(0)(1)(0)(0)(0)</td></tr>
<tr><td>ω3</td><td>(0)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω3+1</td><td>(0)(1)(0)(1)(0)(1)(0)</td></tr>
<tr><td>ω3+2</td><td>(0)(1)(0)(1)(0)(1)(0)(0)</td></tr>
<tr><td>ω4</td><td>(0)(1)(0)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω5</td><td>(0)(1)(0)(1)(0)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω<sup>2</sup></td><td>(0)(1)(1)</td></tr>
<tr><td>ω<sup>2</sup>+1</td><td>(0)(1)(1)(0)</td></tr>
<tr><td>ω<sup>2</sup>+2</td><td>(0)(1)(1)(0)(0)</td></tr>
<tr><td>ω<sup>2</sup>+3</td><td>(0)(1)(1)(0)(0)(0)</td></tr>
<tr><td>ω<sup>2</sup>+ω</td><td>(0)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>2</sup>+ω+1</td><td>(0)(1)(1)(0)(1)(0)</td></tr>
<tr><td>ω<sup>2</sup>+ω+2</td><td>(0)(1)(1)(0)(1)(0)(0)</td></tr>
<tr><td>ω<sup>2</sup>+ω2</td><td>(0)(1)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω<sup>2</sup>+ω3</td><td>(0)(1)(1)(0)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω<sup>2</sup>2</td><td>(0)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>2</sup>2+1</td><td>(0)(1)(1)(0)(1)(1)(0)</td></tr>
<tr><td>ω<sup>2</sup>2+ω</td><td>(0)(1)(1)(0)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>2</sup>2+ω2</td><td>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω<sup>2</sup>3</td><td>(0)(1)(1)(0)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>2</sup>4</td><td>(0)(1)(1)(0)(1)(1)(0)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup></td><td>(0)(1)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>+1</td><td>(0)(1)(1)(1)(0)</td></tr>
<tr><td>ω<sup>3</sup>+2</td><td>(0)(1)(1)(1)(0)(0)</td></tr>
<tr><td>ω<sup>3</sup>+ω</td><td>(0)(1)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>3</sup>+ω2</td><td>(0)(1)(1)(1)(0)(1)(0)(1)</td></tr>
<tr><td>ω<sup>3</sup>+ω<sup>2</sup></td><td>(0)(1)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>+ω<sup>2</sup>+1</td><td>(0)(1)(1)(1)(0)(1)(1)(0)</td></tr>
<tr><td>ω<sup>3</sup>+ω<sup>2</sup>+ω</td><td>(0)(1)(1)(1)(0)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>3</sup>+ω<sup>2</sup>2</td><td>(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>+ω<sup>2</sup>3</td><td>(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>2</td><td>(0)(1)(1)(1)(0)(1)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>2+1</td><td>(0)(1)(1)(1)(0)(1)(1)(1)(0)</td></tr>
<tr><td>ω<sup>3</sup>2+ω</td><td>(0)(1)(1)(1)(0)(1)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>3</sup>2+ω<sup>2</sup></td><td>(0)(1)(1)(1)(0)(1)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>3</td><td>(0)(1)(1)(1)(0)(1)(1)(1)(0)(1)(1)(1)</td></tr>
<tr><td>ω<sup>3</sup>4</td><td>(0)(1)(1)(1)(0)(1)(1)(1)(0)(1)(1)(1)(0)(1)(1)(1)</td></tr>
<tr><td>ω<sup>4</sup></td><td>(0)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>4</sup>+1</td><td>(0)(1)(1)(1)(1)(0)</td></tr>
<tr><td>ω<sup>4</sup>+ω</td><td>(0)(1)(1)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>4</sup>+ω<sup>2</sup></td><td>(0)(1)(1)(1)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>4</sup>+ω<sup>3</sup></td><td>(0)(1)(1)(1)(1)(0)(1)(1)(1)</td></tr>
<tr><td>ω<sup>4</sup>2</td><td>(0)(1)(1)(1)(1)(0)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>4</sup>3</td><td>(0)(1)(1)(1)(1)(0)(1)(1)(1)(1)(0)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>5</sup></td><td>(0)(1)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>6</sup></td><td>(0)(1)(1)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>7</sup></td><td>(0)(1)(1)(1)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω</sup></td><td>(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω</sup>+1</td><td>(0)(1)(2)(0)</td></tr>
<tr><td>ω<sup>ω</sup>+2</td><td>(0)(1)(2)(0)(0)</td></tr>
<tr><td>ω<sup>ω</sup>+ω</td><td>(0)(1)(2)(0)(1)</td></tr>
<tr><td>ω<sup>ω</sup>+ω+1</td><td>(0)(1)(2)(0)(1)(0)</td></tr>
<tr><td>ω<sup>ω</sup>+ω2</td><td>(0)(1)(2)(0)(1)(0)(1)</td></tr>
<tr><td>ω<sup>ω</sup>+ω<sup>2</sup></td><td>(0)(1)(2)(0)(1)(1)</td></tr>
<tr><td>ω<sup>ω</sup>+ω<sup>3</sup></td><td>(0)(1)(2)(0)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω</sup>+ω<sup>4</sup></td><td>(0)(1)(2)(0)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω</sup>2</td><td>(0)(1)(2)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω</sup>2+1</td><td>(0)(1)(2)(0)(1)(2)(0)</td></tr>
<tr><td>ω<sup>ω</sup>2+ω</td><td>(0)(1)(2)(0)(1)(2)(0)(1)</td></tr>
<tr><td>ω<sup>ω</sup>2+ω<sup>2</sup></td><td>(0)(1)(2)(0)(1)(2)(0)(1)(1)</td></tr>
<tr><td>ω<sup>ω</sup>3</td><td>(0)(1)(2)(0)(1)(2)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω</sup>4</td><td>(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω+1</sup></td><td>(0)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω+1</sup>+1</td><td>(0)(1)(2)(1)(0)</td></tr>
<tr><td>ω<sup>ω+1</sup>+ω</td><td>(0)(1)(2)(1)(0)(1)</td></tr>
<tr><td>ω<sup>ω+1</sup>+ω<sup>2</sup></td><td>(0)(1)(2)(1)(0)(1)(1)</td></tr>
<tr><td>ω<sup>ω+1</sup>+ω<sup>ω</sup></td><td>(0)(1)(2)(1)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω+1</sup>+ω<sup>ω</sup>2</td><td>(0)(1)(2)(1)(0)(1)(2)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω+1</sup>2</td><td>(0)(1)(2)(1)(0)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω+1</sup>2+ω<sup>ω</sup></td><td>(0)(1)(2)(1)(0)(1)(2)(1)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω+1</sup>3</td><td>(0)(1)(2)(1)(0)(1)(2)(1)(0)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω+2</sup></td><td>(0)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω+2</sup>+1</td><td>(0)(1)(2)(1)(1)(0)</td></tr>
<tr><td>ω<sup>ω+2</sup>+ω</td><td>(0)(1)(2)(1)(1)(0)(1)</td></tr>
<tr><td>ω<sup>ω+2</sup>+ω<sup>ω</sup></td><td>(0)(1)(2)(1)(1)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω+2</sup>+ω<sup>ω+1</sup></td><td>(0)(1)(2)(1)(1)(0)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω+2</sup>2</td><td>(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω+2</sup>3</td><td>(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω+3</sup></td><td>(0)(1)(2)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω+4</sup></td><td>(0)(1)(2)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω+5</sup></td><td>(0)(1)(2)(1)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω2</sup></td><td>(0)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω2</sup>+1</td><td>(0)(1)(2)(1)(2)(0)</td></tr>
<tr><td>ω<sup>ω2</sup>+ω<sup>ω</sup></td><td>(0)(1)(2)(1)(2)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω2</sup>+ω<sup>ω+1</sup></td><td>(0)(1)(2)(1)(2)(0)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω2</sup>2</td><td>(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω2</sup>3</td><td>(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω2+1</sup></td><td>(0)(1)(2)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω2+1</sup>+ω<sup>ω</sup></td><td>(0)(1)(2)(1)(2)(1)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω2+1</sup>2</td><td>(0)(1)(2)(1)(2)(1)(0)(1)(2)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω2+2</sup></td><td>(0)(1)(2)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω2+3</sup></td><td>(0)(1)(2)(1)(2)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω2+4</sup></td><td>(0)(1)(2)(1)(2)(1)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω3</sup></td><td>(0)(1)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω3</sup>+ω</td><td>(0)(1)(2)(1)(2)(1)(2)(0)(1)</td></tr>
<tr><td>ω<sup>ω3</sup>2</td><td>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω3+1</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω3+2</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω3+3</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω4</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω4+1</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω4+2</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω5</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω6</sup></td><td>(0)(1)(2)(1)(2)(1)(2)(1)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup></sup></td><td>(0)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup></sup>+1</td><td>(0)(1)(2)(2)(0)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup></sup>+ω</td><td>(0)(1)(2)(2)(0)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup></sup>+ω<sup>ω</sup></td><td>(0)(1)(2)(2)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup></sup>2</td><td>(0)(1)(2)(2)(0)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup></sup>3</td><td>(0)(1)(2)(2)(0)(1)(2)(2)(0)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+1</sup></td><td>(0)(1)(2)(2)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+2</sup></td><td>(0)(1)(2)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+3</sup></td><td>(0)(1)(2)(2)(1)(1)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+ω</sup></td><td>(0)(1)(2)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+ω+1</sup></td><td>(0)(1)(2)(2)(1)(2)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+ω+2</sup></td><td>(0)(1)(2)(2)(1)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+ω2</sup></td><td>(0)(1)(2)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>+ω3</sup></td><td>(0)(1)(2)(2)(1)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>2</sup></td><td>(0)(1)(2)(2)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>2</sup>+1</td><td>(0)(1)(2)(2)(1)(2)(2)(0)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>2+1</sup></td><td>(0)(1)(2)(2)(1)(2)(2)(1)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>2+ω</sup></td><td>(0)(1)(2)(2)(1)(2)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>2+ω2</sup></td><td>(0)(1)(2)(2)(1)(2)(2)(1)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>3</sup></td><td>(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>2</sup>4</sup></td><td>(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup></sup></td><td>(0)(1)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup></sup>+1</td><td>(0)(1)(2)(2)(2)(0)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>+1</sup></td><td>(0)(1)(2)(2)(2)(1)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>+2</sup></td><td>(0)(1)(2)(2)(2)(1)(1)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>+ω</sup></td><td>(0)(1)(2)(2)(2)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>+ω<sup>2</sup></sup></td><td>(0)(1)(2)(2)(2)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>+ω<sup>2</sup>2</sup></td><td>(0)(1)(2)(2)(2)(1)(2)(2)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>2</sup></td><td>(0)(1)(2)(2)(2)(1)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>3</sup>3</sup></td><td>(0)(1)(2)(2)(2)(1)(2)(2)(2)(1)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>4</sup></sup></td><td>(0)(1)(2)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>4</sup>+1</sup></td><td>(0)(1)(2)(2)(2)(2)(1)</td></tr>
<tr><td>ω<sup>ω<sup>4</sup>2</sup></td><td>(0)(1)(2)(2)(2)(2)(1)(2)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>5</sup></sup></td><td>(0)(1)(2)(2)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>6</sup></sup></td><td>(0)(1)(2)(2)(2)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup></sup></td><td>(0)(1)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup></sup>+1</td><td>(0)(1)(2)(3)(0)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup></sup>+ω<sup>ω</sup></td><td>(0)(1)(2)(3)(0)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup></sup>2</td><td>(0)(1)(2)(3)(0)(1)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup>+1</sup></td><td>(0)(1)(2)(3)(1)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup>+ω</sup></td><td>(0)(1)(2)(3)(1)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup>+ω<sup>2</sup></sup></td><td>(0)(1)(2)(3)(1)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup>2</sup></td><td>(0)(1)(2)(3)(1)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω</sup>3</sup></td><td>(0)(1)(2)(3)(1)(2)(3)(1)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω+1</sup></sup></td><td>(0)(1)(2)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω+1</sup>+1</sup></td><td>(0)(1)(2)(3)(2)(1)</td></tr>
<tr><td>ω<sup>ω<sup>ω+1</sup>2</sup></td><td>(0)(1)(2)(3)(2)(1)(2)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω+2</sup></sup></td><td>(0)(1)(2)(3)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω+3</sup></sup></td><td>(0)(1)(2)(3)(2)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω2</sup></sup></td><td>(0)(1)(2)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω2</sup>+1</sup></td><td>(0)(1)(2)(3)(2)(3)(1)</td></tr>
<tr><td>ω<sup>ω<sup>ω2</sup>2</sup></td><td>(0)(1)(2)(3)(2)(3)(1)(2)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω2+1</sup></sup></td><td>(0)(1)(2)(3)(2)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω2+2</sup></sup></td><td>(0)(1)(2)(3)(2)(3)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω3</sup></sup></td><td>(0)(1)(2)(3)(2)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω3+1</sup></sup></td><td>(0)(1)(2)(3)(2)(3)(2)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω4</sup></sup></td><td>(0)(1)(2)(3)(2)(3)(2)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω5</sup></sup></td><td>(0)(1)(2)(3)(2)(3)(2)(3)(2)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup></sup></sup></td><td>(0)(1)(2)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup></sup>+1</sup></td><td>(0)(1)(2)(3)(3)(1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>+1</sup></sup></td><td>(0)(1)(2)(3)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>+2</sup></sup></td><td>(0)(1)(2)(3)(3)(2)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>+ω</sup></sup></td><td>(0)(1)(2)(3)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>+ω2</sup></sup></td><td>(0)(1)(2)(3)(3)(2)(3)(2)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>2</sup></sup></td><td>(0)(1)(2)(3)(3)(2)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>2+1</sup></sup></td><td>(0)(1)(2)(3)(3)(2)(3)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>2</sup>3</sup></sup></td><td>(0)(1)(2)(3)(3)(2)(3)(3)(2)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>3</sup></sup></sup></td><td>(0)(1)(2)(3)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>3</sup>+1</sup></sup></td><td>(0)(1)(2)(3)(3)(3)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>3</sup>2</sup></sup></td><td>(0)(1)(2)(3)(3)(3)(2)(3)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>4</sup></sup></sup></td><td>(0)(1)(2)(3)(3)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>5</sup></sup></sup></td><td>(0)(1)(2)(3)(3)(3)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></td><td>(0)(1)(2)(3)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup>+1</td><td>(0)(1)(2)(3)(4)(0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω</sup></sup>+1</sup></td><td>(0)(1)(2)(3)(4)(1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω</sup></sup>2</sup></td><td>(0)(1)(2)(3)(4)(1)(2)(3)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω</sup>+1</sup></sup></td><td>(0)(1)(2)(3)(4)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω</sup>2</sup></sup></td><td>(0)(1)(2)(3)(4)(2)(3)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω+1</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω+2</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω+3</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(3)(3)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω2</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(3)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω3</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(3)(4)(3)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>2</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>2</sup>+1</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(4)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>2</sup>2</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(4)(3)(4)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>3</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(4)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>4</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(4)(4)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup>+1</td><td>(0)(1)(2)(3)(4)(5)(0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup>+1</sup></td><td>(0)(1)(2)(3)(4)(5)(1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup>+1</sup></sup></td><td>(0)(1)(2)(3)(4)(5)(2)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup>+1</sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(3)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω+1</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω+2</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(4)(4)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω2</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(4)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω3</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(4)(5)(4)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>2</sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>2</sup>2</sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(5)(4)(5)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>3</sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(5)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>4</sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(5)(5)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω+1</sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(5)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω2</sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(5)(6)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>2</sup></sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(6)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>3</sup></sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(6)(6)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(7)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(7)(8)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></sup></sup></sup></td><td>(0)(1)(2)(3)(4)(5)(6)(7)(8)(9)</td></tr>
<tr><td>ε<sub>0</sub></td><td>(0,0)(1,1)</td></tr>
<tr><td>ε<sub>0</sub>+1</td><td>(0,0)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+2</td><td>(0,0)(1,1)(0,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+3</td><td>(0,0)(1,1)(0,0)(0,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω</td><td>(0,0)(1,1)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω+1</td><td>(0,0)(1,1)(0,0)(1,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω+2</td><td>(0,0)(1,1)(0,0)(1,0)(0,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω2</td><td>(0,0)(1,1)(0,0)(1,0)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω3</td><td>(0,0)(1,1)(0,0)(1,0)(0,0)(1,0)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>2</sup></td><td>(0,0)(1,1)(0,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>2</sup>+1</td><td>(0,0)(1,1)(0,0)(1,0)(1,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>2</sup>2</td><td>(0,0)(1,1)(0,0)(1,0)(1,0)(0,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>3</sup></td><td>(0,0)(1,1)(0,0)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>4</sup></td><td>(0,0)(1,1)(0,0)(1,0)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω</sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω</sup>+1</td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω</sup>2</td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(0,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω+1</sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω+2</sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω2</sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω3</sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>2</sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>3</sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>ω+1</sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>ω2</sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>ω<sup>2</sup></sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(3,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>0</sub>+ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></td><td>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ε<sub>0</sub>2</td><td>(0,0)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>0</sub>2+1</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>2+2</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω2</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω<sup>2</sup></td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω<sup>3</sup></td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω<sup>ω</sup></td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω<sup>ω<sup>2</sup></sup></td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>2+ω<sup>ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>0</sub>3</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>0</sub>3+1</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>0</sub>3+ω</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>0</sub>3+ω<sup>ω</sup></td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>0</sub>4</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>0</sub>5</td><td>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>+1</td><td>(0,0)(1,1)(1,0)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>+ω</td><td>(0,0)(1,1)(1,0)(0,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>+ω<sup>ω</sup></td><td>(0,0)(1,1)(1,0)(0,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>+ε<sub>0</sub></td><td>(0,0)(1,1)(1,0)(0,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>+ε<sub>0</sub>+1</td><td>(0,0)(1,1)(1,0)(0,0)(1,1)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>+ε<sub>0</sub>2</td><td>(0,0)(1,1)(1,0)(0,0)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>2</td><td>(0,0)(1,1)(1,0)(0,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>2+ε<sub>0</sub></td><td>(0,0)(1,1)(1,0)(0,0)(1,1)(1,0)(0,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+1</sup>3</td><td>(0,0)(1,1)(1,0)(0,0)(1,1)(1,0)(0,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+2</sup></td><td>(0,0)(1,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+2</sup>+1</td><td>(0,0)(1,1)(1,0)(1,0)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+2</sup>+ε<sub>0</sub></td><td>(0,0)(1,1)(1,0)(1,0)(0,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+2</sup>+ω<sup>ε<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(1,0)(1,0)(0,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+2</sup>2</td><td>(0,0)(1,1)(1,0)(1,0)(0,0)(1,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+2</sup>3</td><td>(0,0)(1,1)(1,0)(1,0)(0,0)(1,1)(1,0)(1,0)(0,0)(1,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+3</sup></td><td>(0,0)(1,1)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+4</sup></td><td>(0,0)(1,1)(1,0)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+5</sup></td><td>(0,0)(1,1)(1,0)(1,0)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω</sup></td><td>(0,0)(1,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω</sup>+ε<sub>0</sub></td><td>(0,0)(1,1)(1,0)(2,0)(0,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω</sup>+ω<sup>ε<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(1,0)(2,0)(0,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω</sup>2</td><td>(0,0)(1,1)(1,0)(2,0)(0,0)(1,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω+1</sup></td><td>(0,0)(1,1)(1,0)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω+2</sup></td><td>(0,0)(1,1)(1,0)(2,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω+3</sup></td><td>(0,0)(1,1)(1,0)(2,0)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω2</sup></td><td>(0,0)(1,1)(1,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω2+1</sup></td><td>(0,0)(1,1)(1,0)(2,0)(1,0)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω3</sup></td><td>(0,0)(1,1)(1,0)(2,0)(1,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>2</sup>+1</sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>2</sup>+ω</sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>2</sup>2</sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)(1,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>3</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>4</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>5</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup>+1</td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup>+1</sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup>2</sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω+1</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω+2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω3</sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>2</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>3</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2</sup></td><td>(0,0)(1,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2</sup>+1</td><td>(0,0)(1,1)(1,0)(2,1)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2</sup>2</td><td>(0,0)(1,1)(1,0)(2,1)(0,0)(1,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+1</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω<sup>2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω<sup>3</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω<sup>ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>2+ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>3</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>3</sup>+1</td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>3+1</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>3+2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>3+ω</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>3+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>4</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>0</sub>5</sup></td><td>(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup>+1</td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(0,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup>2</td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(0,0)(1,1)(1,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+1</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+ω</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+ε<sub>0</sub>2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>3</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+2</sup>+1</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+2</sup>+ω</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(2,0)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+2</sup>2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(2,0)(1,0)(2,1)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+3</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+4</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω</sup>+1</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(1,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω+1</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω+2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω3</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>2</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>3</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>ω</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2</sup>+1</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(1,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2</sup>2</sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(1,0)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2+1</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2+2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2+ω</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>2+ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>3</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>0</sub>4</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+ε<sub>0</sub></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>2</sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(2,0)(3,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+2</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+3</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω2</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>2</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,0)(5,0)(6,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2+1</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>3</sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+2</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,0)(6,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>3</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(4,0)(5,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(5,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+ω</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(5,0)(6,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(5,0)(6,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(5,0)(6,1)(6,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(5,0)(6,1)(6,0)(7,1)</td></tr>
<tr><td>ε<sub>1</sub></td><td>(0,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>1</sub>+1</td><td>(0,0)(1,1)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>1</sub>+ω</td><td>(0,0)(1,1)(1,1)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>1</sub>+ω<sup>ω</sup></td><td>(0,0)(1,1)(1,1)(0,0)(1,0)(2,0)</td></tr>
<tr><td>ε<sub>1</sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(1,1)(0,0)(1,1)(1,0)</td></tr>
<tr><td>ε<sub>1</sub>2</td><td>(0,0)(1,1)(1,1)(0,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>1</sub>3</td><td>(0,0)(1,1)(1,1)(0,0)(1,1)(1,1)(0,0)(1,1)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+1</sup></td><td>(0,0)(1,1)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+1</sup>+ε<sub>1</sub></td><td>(0,0)(1,1)(1,1)(1,0)(0,0)(1,1)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+1</sup>2</td><td>(0,0)(1,1)(1,1)(1,0)(0,0)(1,1)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+2</sup></td><td>(0,0)(1,1)(1,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+3</sup></td><td>(0,0)(1,1)(1,1)(1,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω+1</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω2</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>2</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>3</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ε<sub>0</sub></sup>+1</td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ε<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ε<sub>0</sub>2</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>+1</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>+ω</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>2</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>+ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2</sup>+1</td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2+1</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2+ω</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>2+ω<sup>ε<sub>0</sub>+1</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>3</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>1</sub>4</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(1,0)(2,1)(2,1)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+1</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+1</sup>+1</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+1</sup>+ε<sub>1</sub></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+1</sup>2</sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(1,0)(2,1)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+2</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+3</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+ω</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+ε<sub>0</sub></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>+1</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>2</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>2+1</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>1</sub>3</sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>+1</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>+2</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>+ω</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>+ε<sub>0</sub></sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>3</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)(3,0)(4,1)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>+1</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>2</sup></sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)(4,0)(5,1)(5,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>2</sup></sup></sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)(4,0)(5,1)(5,1)(5,0)(6,1)(6,1)</td></tr>
<tr><td>ε<sub>2</sub></td><td>(0,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>2</sub>+1</td><td>(0,0)(1,1)(1,1)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>2</sub>+ω</td><td>(0,0)(1,1)(1,1)(1,1)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>2</sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(1,1)(1,1)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>2</sub>+ε<sub>1</sub></td><td>(0,0)(1,1)(1,1)(1,1)(0,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>2</sub>2</td><td>(0,0)(1,1)(1,1)(1,1)(0,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>2</sub>3</td><td>(0,0)(1,1)(1,1)(1,1)(0,0)(1,1)(1,1)(1,1)(0,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>+1</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>+2</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>+ω</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>+ε<sub>1</sub></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>2</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>2</sub>3</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(1,0)(2,1)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>2</sub>+1</sup></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>2</sub>+ε<sub>0</sub></sup></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>2</sub>2</sup></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(2,0)(3,1)(3,1)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>2</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(2,0)(3,1)(3,1)(3,1)(3,0)(4,1)(4,1)(4,1)</td></tr>
<tr><td>ε<sub>3</sub></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>3</sub>+1</td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>3</sub>2</td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(0,0)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>3</sub>+1</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>3</sub>2</sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>3</sub>+1</sup></sup></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(1,0)(2,1)(2,1)(2,1)(2,1)(2,0)</td></tr>
<tr><td>ε<sub>4</sub></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>5</sub></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>6</sub></td><td>(0,0)(1,1)(1,1)(1,1)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω</sub></td><td>(0,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω</sub>+1</td><td>(0,0)(1,1)(2,0)(0,0)</td></tr>
<tr><td>ε<sub>ω</sub>+ω</td><td>(0,0)(1,1)(2,0)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>ω</sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(2,0)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>ω</sub>2</td><td>(0,0)(1,1)(2,0)(0,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω</sub>3</td><td>(0,0)(1,1)(2,0)(0,0)(1,1)(2,0)(0,0)(1,1)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+2</sup></td><td>(0,0)(1,1)(2,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+ω</sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+ω<sup>ω</sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+ε<sub>1</sub></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>+ε<sub>2</sub></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>2+1</sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>2+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>3</sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω</sub>4</sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(1,0)(2,1)(3,0)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>+1</sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>+2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>+ω</sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>+ω<sup>ω</sup></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>+ε<sub>0</sub></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>+ε<sub>1</sub></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω</sub>3</sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>ω</sub>+1</sup></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>ω</sub>+ε<sub>0</sub></sup></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>ω</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)(3,0)(4,1)(5,0)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>ω</sub>2</sup></sup></sup></sup></td><td>(0,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)(3,0)(4,1)(5,0)(4,0)(5,1)(6,0)</td></tr>
<tr><td>ε<sub>ω+1</sub></td><td>(0,0)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω+1</sub>+1</td><td>(0,0)(1,1)(2,0)(1,1)(0,0)</td></tr>
<tr><td>ε<sub>ω+1</sub>2</td><td>(0,0)(1,1)(2,0)(1,1)(0,0)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ω</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ε<sub>1</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ε<sub>ω</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ε<sub>ω</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ω<sup>ε<sub>ω</sub>+1</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>+ω<sup>ε<sub>ω</sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>2+1</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>2+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>2+ε<sub>ω</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+1</sub>3</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(1,0)(2,1)(3,0)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+1</sub>+1</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+1</sub>+2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+1</sub>+ω</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+1</sub>+ε<sub>0</sub></sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+1</sub>+ε<sub>ω</sub></sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+1</sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)(3,1)(4,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ε<sub>ω+1</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(2,0)(3,1)(4,0)(3,1)(3,0)(4,1)(5,0)(4,1)</td></tr>
<tr><td>ε<sub>ω+2</sub></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω+2</sub>+1</td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(0,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+2</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+2</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω+2</sub>+ε<sub>ω</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω+2</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,0)(2,1)(3,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+2</sub>+1</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,0)(2,1)(3,0)(2,1)(2,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω+2</sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,0)(2,1)(3,0)(2,1)(2,1)(2,0)(3,1)(4,0)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ω+3</sub></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω+4</sub></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω+5</sub></td><td>(0,0)(1,1)(2,0)(1,1)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω2</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω2</sub>+1</td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(0,0)</td></tr>
<tr><td>ε<sub>ω2</sub>+ω</td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>ω2</sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>ω2</sub>+ε<sub>ω</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(0,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω2</sub>2</td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(0,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω2</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω2</sub>+2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω2</sub>+ω</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω2</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω2</sub>+ε<sub>ω</sub></sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω2</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω2</sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,1)(3,0)(2,0)(3,1)(4,0)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ω2+1</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω2+1</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω2+1</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,0)(2,1)(3,0)(2,1)(3,0)(2,1)</td></tr>
<tr><td>ε<sub>ω2+2</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω2+3</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω2+4</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω3</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω3</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω3</sub>2</sup></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)</td></tr>
<tr><td>ε<sub>ω3+1</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω3+2</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω3+3</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω4</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω5</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω6</sub></td><td>(0,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup></sub></td><td>(0,0)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup></sub>+1</td><td>(0,0)(1,1)(2,0)(2,0)(0,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup></sub>+ω</td><td>(0,0)(1,1)(2,0)(2,0)(0,0)(1,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup></sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(2,0)(2,0)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup></sub>2</td><td>(0,0)(1,1)(2,0)(2,0)(0,0)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup></sub>+1</sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup></sub>+ω</sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup></sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup></sub>+ε<sub>ω</sub></sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup></sub>2</sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)(2,1)(3,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω<sup>2</sup></sub>+1</sup></sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)(2,1)(3,0)(3,0)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ω<sup>2</sup></sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,0)(2,1)(3,0)(3,0)(2,0)(3,1)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+1</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup>+1</sub>+1</sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ω<sup>2</sup>+1</sub>2</sup></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(1,0)(2,1)(3,0)(3,0)(2,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+2</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+3</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+ω</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+ω+1</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+ω+2</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+ω2</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>+ω3</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>2</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>2+1</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>2+ω</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>3</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>2</sup>4</sub></td><td>(0,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>3</sup></sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>3</sup>+1</sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>3</sup>+ω</sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>3</sup>+ω<sup>2</sup></sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>3</sup>2</sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(1,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>3</sup>3</sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(1,1)(2,0)(2,0)(2,0)(1,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>4</sup></sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>4</sup>+1</sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>4</sup>2</sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(2,0)(1,1)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>5</sup></sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>6</sup></sub></td><td>(0,0)(1,1)(2,0)(2,0)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω</sup>+1</sub></td><td>(0,0)(1,1)(2,0)(3,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω</sup>+ω</sub></td><td>(0,0)(1,1)(2,0)(3,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω</sup>2</sub></td><td>(0,0)(1,1)(2,0)(3,0)(1,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω+2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω+3</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω2+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(2,0)(3,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω3</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>2</sup>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(3,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>2</sup>2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(3,0)(2,0)(3,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>3</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(3,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>4</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(3,0)(3,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>2</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>3</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(5,0)(6,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub></sub>+1</td><td>(0,0)(1,1)(2,0)(3,1)(0,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub></sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub></sub>+ε<sub>ω</sub></td><td>(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub></sub>2</td><td>(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ε<sub>ε<sub>0</sub></sub>+1</sup></td><td>(0,0)(1,1)(2,0)(3,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ε<sub>0</sub></sub>+ω</sup></td><td>(0,0)(1,1)(2,0)(3,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ε<sub>ε<sub>0</sub></sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,0)(3,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ε<sub>ε<sub>0</sub></sub>2</sup></td><td>(0,0)(1,1)(2,0)(3,1)(1,0)(2,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ε<sub>0</sub></sub>+1</sup></sup></td><td>(0,0)(1,1)(2,0)(3,1)(1,0)(2,1)(3,0)(4,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ε<sub>ε<sub>0</sub></sub>2</sup></sup></td><td>(0,0)(1,1)(2,0)(3,1)(1,0)(2,1)(3,0)(4,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+2</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+3</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω2</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω<sup>2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω<sup>3</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω<sup>ω</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>+ω<sup>ω<sup>ω</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>2</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>2+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(3,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>0</sub>3</sub></td><td>(0,0)(1,1)(2,0)(3,1)(1,1)(2,0)(3,1)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+1</sup>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+1</sup>2</sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(1,1)(2,0)(3,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+3</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+ω</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>2+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(3,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>0</sub>3</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(2,0)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>+1</sup>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>+2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>+ω</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>+ω<sup>ω</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>3</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,1)(3,0)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,1)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)(5,0)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>1</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>1</sub>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>1</sub>+ω</sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>1</sub>2</sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(1,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>+ω</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>+ε<sub>0</sub></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>+ε<sub>0</sub>2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)(3,1)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>+ω<sup>ε<sub>0</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>1</sub>2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>1</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>1</sub>+ω</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,0)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>1</sub>+ε<sub>0</sub></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>1</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>+1</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)(4,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ω<sup>ε<sub>1</sub>2</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)(4,0)(5,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>2</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>2</sub>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>2</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>2</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>2</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)(3,0)(4,1)(4,1)(4,1)</td></tr>
<tr><td>ε<sub>ε<sub>3</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>4</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(3,1)(3,1)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω</sub>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(1,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>ω</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>ω</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>ω</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,0)(4,1)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω+1</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω+2</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω+3</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,1)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω2</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω2+1</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω3</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>2</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>2</sup>+1</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(4,0)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>2</sup>+ω</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(4,0)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>2</sup>2</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(4,0)(3,1)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>3</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>4</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(4,0)(4,0)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω+1</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω2</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(4,0)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>2</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>3</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(5,0)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ω</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)(7,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)(7,0)(8,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub></sub></sub>+1</td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(0,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub></sub></sub>2</td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ω<sup>ε<sub>ε<sub>ε<sub>0</sub></sub></sub>+1</sup></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ε<sub>ε<sub>0</sub></sub></sub>+2</sup></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(1,0)(2,1)(3,0)(4,1)(5,0)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub></sub>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub></sub>+ω</sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub></sub>2</sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(1,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>ε<sub>0</sub></sub>+1</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ε<sub>ε<sub>0</sub></sub>2</sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>ε<sub>0</sub></sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ε<sub>ε<sub>0</sub></sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(3,0)(4,1)(5,0)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub>+ω</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>0</sub>2</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ε<sub>0</sub>+1</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ε<sub>0</sub>2</sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(5,0)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>1</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>2</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(5,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>3</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(5,1)(5,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω+1</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω2</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(5,1)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω<sup>2</sup></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω<sup>3</sup></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(6,0)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω<sup>ω</sup></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω<sup>ω<sup>ω</sup></sup></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,0)(8,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>0</sub></sub></sub>+1</sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(1,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>0</sub></sub>+1</sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>0</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>1</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>2</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(7,1)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ω</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(8,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ω<sup>ω</sup></sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(8,0)(9,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ε<sub>0</sub></sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(8,0)(9,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ε<sub>ε<sub>0</sub></sub></sub></sub></sub></sub></td><td>(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)(8,0)(9,1)(10,0)(11,1)</td></tr>
<tr><td>ζ<sub>0</sub></td><td>(0,0)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>0</sub>+1</td><td>(0,0)(1,1)(2,1)(0,0)</td></tr>
<tr><td>ζ<sub>0</sub>+ω</td><td>(0,0)(1,1)(2,1)(0,0)(1,0)</td></tr>
<tr><td>ζ<sub>0</sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(2,1)(0,0)(1,1)</td></tr>
<tr><td>ζ<sub>0</sub>2</td><td>(0,0)(1,1)(2,1)(0,0)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>0</sub>3</td><td>(0,0)(1,1)(2,1)(0,0)(1,1)(2,1)(0,0)(1,1)(2,1)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+2</sup></td><td>(0,0)(1,1)(2,1)(1,0)(1,0)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+ω</sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+ε<sub>1</sub></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+ε<sub>ω</sub></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,0)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>+ε<sub>ε<sub>0</sub></sub></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,0)(4,1)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>2</sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)</td></tr>
<tr><td>ω<sup>ζ<sub>0</sub>3</sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)(1,0)(2,1)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ζ<sub>0</sub>+1</sup></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>ζ<sub>0</sub>+ω</sup></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,0)</td></tr>
<tr><td>ω<sup>ω<sup>ζ<sub>0</sub>+ε<sub>0</sub></sup></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>ζ<sub>0</sub>2</sup></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ω<sup>ω<sup>ω<sup>ζ<sub>0</sub>2</sup></sup></sup></td><td>(0,0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)(3,0)(4,1)(5,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+1</sub>2</td><td>(0,0)(1,1)(2,1)(1,1)(0,0)(1,1)(2,1)(1,1)</td></tr>
<tr><td>ω<sup>ε<sub>ζ<sub>0</sub>+1</sub>+1</sup></td><td>(0,0)(1,1)(2,1)(1,1)(1,0)</td></tr>
<tr><td>ω<sup>ε<sub>ζ<sub>0</sub>+1</sub>2</sup></td><td>(0,0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+2</sub></td><td>(0,0)(1,1)(2,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+3</sub></td><td>(0,0)(1,1)(2,1)(1,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ω+1</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ω<sup>2</sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ω<sup>ω</sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ε<sub>1</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ε<sub>ω</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>+ε<sub>ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>2</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>2+1</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>2+ω</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>0</sub>3</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(1,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ζ<sub>0</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(2,0)</td></tr>
<tr><td>ε<sub>ω<sup>ζ<sub>0</sub>+ω</sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(2,0)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ζ<sub>0</sub>+ε<sub>0</sub></sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ω<sup>ζ<sub>0</sub>2</sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ζ<sub>0</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,0)</td></tr>
<tr><td>ε<sub>ω<sup>ω<sup>ζ<sub>0</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,0)(4,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+2</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+ω</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+ω<sup>ω</sup></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+ε<sub>1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+ε<sub>ω</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>+ε<sub>ε<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,0)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>2</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>2+1</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>0</sub>3</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(3,1)(4,0)(5,1)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ζ<sub>0</sub>+1</sup></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ζ<sub>0</sub>+1</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,0)</td></tr>
<tr><td>ε<sub>ε<sub>ω<sup>ω<sup>ζ<sub>0</sub>2</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,0)(6,1)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>+2</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>+ω</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>+ε<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,0)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>2</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,0)(7,1)(8,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ω<sup>ζ<sub>0</sub>+1</sup></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,0)(7,1)(8,1)(7,0)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,0)(7,1)(8,1)(7,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,0)(7,1)(8,1)(7,1)(8,0)(9,1)(10,1)(9,1)</td></tr>
<tr><td>ζ<sub>1</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>1</sub>+1</td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(0,0)</td></tr>
<tr><td>ζ<sub>1</sub>2</td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(0,0)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ω<sup>ζ<sub>1</sub>+1</sup></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>ζ<sub>1</sub>2</sup></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,0)(2,1)(3,1)(2,1)(3,1)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>+2</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>+ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>+ζ<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>+ε<sub>ζ<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)</td></tr>
<tr><td>ε<sub>ζ<sub>1</sub>2</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>ζ<sub>1</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,0)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>1</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>1</sub>+ω</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>1</sub>+ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>1</sub>2</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ζ<sub>1</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,1)(5,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>ε<sub>ζ<sub>1</sub>+1</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,1)(5,1)(6,0)(7,1)(8,1)(7,1)(8,1)(7,1)</td></tr>
<tr><td>ζ<sub>2</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ε<sub>ζ<sub>2</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>2</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>2</sub>+ζ<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ζ<sub>2</sub>2</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>2</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,1)(3,1)</td></tr>
<tr><td>ζ<sub>3</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>4</sub></td><td>(0,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ω</sub></td><td>(0,0)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>ω</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)</td></tr>
<tr><td>ε<sub>ζ<sub>ω</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>ζ<sub>ω</sub>+ζ<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>ζ<sub>ω</sub>2</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(3,1)(4,1)(4,0)</td></tr>
<tr><td>ε<sub>ε<sub>ζ<sub>ω</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(3,1)(4,1)(4,0)(3,1)</td></tr>
<tr><td>ζ<sub>ω+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ω+2</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ω+3</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ω2</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ζ<sub>ω2+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(2,0)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ω3</sub></td><td>(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(2,0)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>2</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>2</sup>+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(2,0)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ω<sup>2</sup>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,0)(2,0)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>2</sup>2</sub></td><td>(0,0)(1,1)(2,1)(2,0)(2,0)(1,1)(2,1)(2,0)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>3</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>4</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(2,0)(2,0)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω+1</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,0)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω2</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,0)(2,0)(3,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω<sup>2</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,0)(3,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω<sup>ω</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,0)(4,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω<sup>ω<sup>ω</sup></sup></sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,0)(4,0)(5,0)</td></tr>
<tr><td>ζ<sub>ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ζ<sub>ε<sub>0</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ε<sub>0</sub>2</sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(1,1)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ζ<sub>ω<sup>ε<sub>0</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ε<sub>0</sub>+ω</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(2,0)(3,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ε<sub>0</sub>2</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(2,0)(3,1)</td></tr>
<tr><td>ζ<sub>ω<sup>ω<sup>ε<sub>0</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(3,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω<sup>ε<sub>0</sub>2</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(3,0)(4,1)</td></tr>
<tr><td>ζ<sub>ε<sub>1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(3,1)</td></tr>
<tr><td>ζ<sub>ε<sub>2</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(3,1)(3,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ω</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ω<sup>2</sup></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)(4,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ω<sup>ω</sup></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)(5,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ε<sub>1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)(5,1)(5,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ε<sub>ω</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)(5,1)(6,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ε<sub>ε<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>0</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>0</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>0</sub>+ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(1,1)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>0</sub>2</sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(1,1)(2,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ω<sup>ζ<sub>0</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(2,0)</td></tr>
<tr><td>ζ<sub>ω<sup>ω<sup>ζ<sub>0</sub>+1</sup></sup></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>0</sub>+2</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(3,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>0</sub>+ω</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>0</sub>+ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>0</sub>2</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>1</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>1</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>1</sub>+ω</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)</td></tr>
<tr><td>ζ<sub>ε<sub>ζ<sub>1</sub>2</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,1)</td></tr>
<tr><td>ζ<sub>ε<sub>ε<sub>ζ<sub>1</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)(6,1)(5,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>2</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>3</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(3,1)(4,1)(3,1)(4,1)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ω</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ω+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ω2</sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(3,1)(4,1)(4,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ω<sup>2</sup></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(4,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ω<sup>ω</sup></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ω<sup>ω<sup>ω</sup></sup></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,0)(6,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ε<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ε<sub>1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(5,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ε<sub>ω</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ε<sub>ε<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,0)(7,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>0</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ε<sub>ζ<sub>0</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(5,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(5,1)(6,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>ω</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(6,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>ω<sup>ω</sup></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(6,0)(7,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>ε<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(6,0)(7,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>ε<sub>ω</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(6,0)(7,1)(8,0)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>ζ<sub>0</sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(6,0)(7,1)(8,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>ζ<sub>ζ<sub>0</sub></sub></sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)(6,0)(7,1)(8,1)(8,0)(9,1)(10,1)</td></tr>
<tr><td>η<sub>0</sub></td><td>(0,0)(1,1)(2,1)(2,1)</td></tr>
<tr><td>η<sub>0</sub>+1</td><td>(0,0)(1,1)(2,1)(2,1)(0,0)</td></tr>
<tr><td>η<sub>0</sub>+ε<sub>0</sub></td><td>(0,0)(1,1)(2,1)(2,1)(0,0)(1,1)</td></tr>
<tr><td>η<sub>0</sub>2</td><td>(0,0)(1,1)(2,1)(2,1)(0,0)(1,1)(2,1)(2,1)</td></tr>
<tr><td>ω<sup>η<sub>0</sub>+1</sup></td><td>(0,0)(1,1)(2,1)(2,1)(1,0)</td></tr>
<tr><td>ω<sup>η<sub>0</sub>+ω</sup></td><td>(0,0)(1,1)(2,1)(2,1)(1,0)(2,0)</td></tr>
<tr><td>ω<sup>η<sub>0</sub>+ε<sub>0</sub></sup></td><td>(0,0)(1,1)(2,1)(2,1)(1,0)(2,1)</td></tr>
<tr><td>ω<sup>η<sub>0</sub>2</sup></td><td>(0,0)(1,1)(2,1)(2,1)(1,0)(2,1)(3,1)(3,1)</td></tr>
<tr><td>ω<sup>ω<sup>η<sub>0</sub>+1</sup></sup></td><td>(0,0)(1,1)(2,1)(2,1)(1,0)(2,1)(3,1)(3,1)(2,0)</td></tr>
<tr><td>ω<sup>ω<sup>η<sub>0</sub>2</sup></sup></td><td>(0,0)(1,1)(2,1)(2,1)(1,0)(2,1)(3,1)(3,1)(2,0)(3,1)(4,1)(4,1)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>+2</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(1,1)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>+ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>+ζ<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>2</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)(4,1)</td></tr>
<tr><td>ε<sub>η<sub>0</sub>3</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)(4,1)(1,1)(2,0)(3,1)(4,1)(4,1)</td></tr>
<tr><td>ε<sub>ω<sup>η<sub>0</sub>+1</sup></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)(4,1)(2,0)</td></tr>
<tr><td>ε<sub>ε<sub>η<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)(4,1)(3,1)</td></tr>
<tr><td>ε<sub>ε<sub>ε<sub>η<sub>0</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,0)(5,1)(6,1)(6,1)(5,1)</td></tr>
<tr><td>ζ<sub>η<sub>0</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ε<sub>ζ<sub>η<sub>0</sub>+1</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(1,1)</td></tr>
<tr><td>ζ<sub>η<sub>0</sub>+2</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>η<sub>0</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ζ<sub>η<sub>0</sub>+ε<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)</td></tr>
<tr><td>ζ<sub>η<sub>0</sub>+ζ<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>η<sub>0</sub>2</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)</td></tr>
<tr><td>ζ<sub>ε<sub>η<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>η<sub>0</sub>+1</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)</td></tr>
<tr><td>ζ<sub>ζ<sub>ζ<sub>η<sub>0</sub>+1</sub></sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)(4,0)(5,1)(6,1)(6,1)(5,1)(6,1)</td></tr>
<tr><td>η<sub>1</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)</td></tr>
<tr><td>ε<sub>η<sub>1</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)</td></tr>
<tr><td>ε<sub>η<sub>1</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,0)</td></tr>
<tr><td>ε<sub>η<sub>1</sub>2</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)(4,1)
<tr><td>ζ<sub>η<sub>1</sub>+1</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)</td></tr>
<tr><td>ζ<sub>η<sub>1</sub>+ω</sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)</td></tr>
<tr><td>ζ<sub>η<sub>1</sub>+η<sub>0</sub></sub></td><td>(0,0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)</td></tr>