-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolutions.tex
947 lines (871 loc) · 33.3 KB
/
solutions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
\section*{Some solutions}
% \pagestyle{plain}
% \fancyhf{}
% \fancyhead[LE,RO]{Rings and modules}
% \fancyhead[RE,LO]{Some solutions}
% \fancyfoot[CE,CO]{\leftmark}
% \fancyfoot[LE,RO]{\thepage}
%\addcontentsline{toc}{chapter}{Some solutions}
% \begin{sol}{xca:algebraic_bijective}
% Let $\sigma\colon C\to C$ be a homomorphism. As $\sigma$ is
% injective, we need to prove that $\sigma$ is surjective. Let $y\in C$. Note that $y$ is algebraic over $K$. Let
% $R$ be the set of roots of the minimal polynomial
% $f(y,K)$ of $y$ over $K$.
% The map
% $\sigma|_R\colon R\to R$ is injective. Since
% $R$ is finite, $\sigma|_R$ is then bijective. In particular,
% there exists $x\in R$ such that $y=\sigma(x)$.
% \end{sol}
\begin{sol}{xca:Q(i)}
Assume that $\Q[i]$ and $\Q[\sqrt{2}]$ were isomorphic
and let $\varphi:\Q[i]\to \Q[\sqrt{2}]$
be a field isomorphism.
Then
\[
\varphi(i)^2=
\varphi(i^2)=
\varphi(-1)=
-\varphi(1)=-1.
\]
But $\varphi(i)\in\Q[\sqrt{2}]$ and
$\Q[\sqrt{2}]\subseteq \R$ where every square is
positive, a contradiction.
\end{sol}
\begin{sol}{xca: field characteristic}
Let $t>0$ be the characteristic of a field $K$ and
let $\varphi:\Z\to K,$ $x\mapsto x1$.
Then, by definition, $\ker\varphi$ is
the ideal generated by $t$.
On the other hand, the image $\varphi(\Z)$ is
a domain, being a subring of a field
and is isomorphic to $\Z/\ker\varphi$.
Therefore, $\ker\varphi$ is a prime ideal of $\Z$,
i.e. $t$ is a prime number.
\end{sol}
\begin{sol}{xca: char 0}
Let $\varphi:\Z\to K,$ $x\mapsto x1$.
We first prove that \textbf{1)} implies all the other
properties. So suppose that the characteristic of $K$ is zero, i.e. $\ker\varphi=\{0\}$.
Then $m1=0$ if and only if $m=0$, i.e.
the order of $1$ is infinite.
Let $0\neq x\in K$. If $mx=0$, then $0=mx=(m1)x$.
But $K$ is a field and $x\neq 0$, hence $m1=0$,
so $m\in\ker\varphi=\{0\}$.
Hence the order of $x$ is infinite.
By definition, the prime subring of $K$ is
the image of $\varphi$, which
so it is isomorphic to $\Z/\ker\varphi=\Z$.
Finally, we prove that \textbf{4)} implies \textbf{1)}.
Take $m\in\ker\varphi$. Then $m1=0$,
but 1 has infinite order, hence $m=0$.
Therefore $\ker\varphi=\{0\}$,
i.e. $K$ has characteristic 0.
\end{sol}
\begin{sol}{xca: char p}
Let $\varphi:\Z\to K,$ $x\mapsto x1$.
We first prove that \textbf{1)} implies all the other
properties. So suppose that the characteristic of $K$ is $p>0$ i.e. $\ker\varphi$ is the ideal generated by $p$.
Then $m1=0$ if and only if $p$ divides $m$, i.e.
the order of $1$ is $p$.
Let $0\neq x\in K$. If $mx=0$, then $0=mx=(m1)x$.
But $K$ is a field and $x\neq 0$, hence $m1=0$,
so $p$ divides $m$.
Hence $x$ has order $p$.
By definition, the prime subring of $K$ is
the image of $\varphi$, which
so it is isomorphic to $\Z/\ker\varphi\cong \Z/p$.
Finally, we prove that \textbf{4)} implies \textbf{1)}.
Take $m\in\ker\varphi$. Then $m1=0$,
but 1 has order $p$, hence $p$ divides $m$.
Therefore $\ker\varphi$ is generated by $p$,
i.e. $K$ has characteristic 0.
\end{sol}
\begin{sol}{xca: Frobenius hom}
Let $\Phi: K\to K$ be the map
$x\mapsto x^{p}$.
Since the map $x\mapsto x^{p^n}$
is exactly $\Phi^n$,
it is enough to prove that $\Phi$ is a field homomorphism.
As $K$ is commutative under multiplication,
for all $x,y \in K$
\[
\Phi(xy) = (xy)^p = x^py^p = \Phi(x) \Phi(y).
\]
Moreover, for all $x,y \in K$
\[
\Phi(x+y) =
(x+y)^p \sum_{k=0}^p \binom{p}{k}x^py^{p-k}=
x^p + y^p + \sum_{k=1}^{p-1} \binom{p}{k}x^ky^{p-k} ,
\]
where $\binom{p}{k} = \frac{p!}{k!(p-k)!}$,
which can also be written as
\[
p! = \binom{p}{k} \cdot k! \cdot (p-k)!
\]
But $p$ divides $p!$, so $p$
has to divide at least one
factor on the right side.
But $p$ doesn't divide $i$
for $1 \leq i \leq p-1$, therefore if $k \leq p-1$, $p$ doesn't divide
$k!$ and if $1 \leq k$, $p$ doesn't divide $(p-k)!$.
Hence, if $1 \leq k \leq p-1$, $p$ has to divide $\binom{p}{k}$ and
\[
\sum_{k=1}^{p-1} \binom{p}{k}x^ky^{p-k}=0.
\]
Therefore, $\Phi$ is a field homomorphism.
\end{sol}
\begin{sol}{xca: prime field is fixed}
By definition $K_0=\{m1\colon m\in \Z\}$ and
$\sigma:K\to K$ is a field homomorphism,
so $\sigma(1)=1$.
Hence, for every $m\in\Z$
\[
\sigma(m1)=m\sigma(1)=m1,
\]
i.e. $\sigma|_{K_0}$ is the identity.
\end{sol}
\begin{sol}{xca: X^3-2}
If $X^3-2$ were reducible, since it has degree 3,
it would have a linear
factor in the decomposition in irreducibles.
Therefore it would have a rational root.
But the roots of $X^3-2$ are $\sqrt[3]{2},\sqrt[3]{2}\xi,\sqrt[3]{2}\xi^2$,
where $\xi$ is a primitive third root of unity,
So all the roots are not in $\Q$, a contradiction.
\end{sol}
\begin{sol}{bxca:Eisenstein's criterion}
Recall first the following:
\begin{lemma}[Gauss' Lemma]
Let $A$ be a unique factorization domain and $K$ be its fraction field.
A non-constant polynomial $f\in A[X]$ is irreducible if and only if it is primitive and irreducible in $K[X]$.
\end{lemma}
Suppose that $f$ is reducible in $K[X]$.
Then $g=c^{-1}f$, where $c$ is the content of $f$,
would be reducible and primitive.
Hence, by Gauss' Lemma, $g$ is also
reducible in $A[X]$.
So $c^{-1}f=g=hl$, for some non-constant polynomials $h,l\in A[X]$.
Now consider $\pi:A\to A/(p)$, $a\mapsto \overline{a}$ the natural surjection.
We know that $\overline{a_i}=0$ for all
$i\in\{0,1,\dots, n-1\}$ and $\overline{a_n}\neq 0$.
Therefore
\[
\overline{\pi}(ch)\overline{\pi}(l)=\overline{c}\:\overline{\pi}(h)\overline{\pi}(l)=\overline{\pi}(f)=\overline{a_n}X^n\in A/(p)[X].
\]
But $A/(p)[X]$ is a UFD so the only possibility
is that $\overline{\pi}(ch)=\overline{d}X^t$ and $\overline{\pi}(l)=\overline{f}X^s$, for
some $f,d\in A/(p)\setminus\{\overline{0}\}$
and $t,s\in\{1,\dots, n-1\}$.
In particular, $\overline{\pi}(ch)$ and $\overline{\pi}(l)$ have both constant term
equal to 0.
Hence $p$ divides $ch(0)$ and $l(0)$ in $A$.
Therefore $p^2$ divides $ch(0)l(0)=f(0)$,
a contradiction.
\end{sol}
\begin{sol}{xca: using Eisenstein}
It is easy to see that $f$ satisfies the Eisenstein criterion for $p=2$
and $g$ satisfies it for $p=5$.
\end{sol}
\begin{sol}{xca: counterexample os Eisenstein in Z}
$f=3(X^{10}+5X^2-15)$ is a product of $3$ and $(X^{10}+5X^2-15)$,
which are both non-invertible elements of $\Z[X]$.
Hence $f$ is reducible.
\end{sol}
\begin{sol}{xca: Q[sqrt2]=Q(sqrt2)}
Clearly for every field extension $L/K$ and
every $\alpha\in L$ we have that
$K[\alpha]\subseteq K(\alpha)$.
Vice versa take $\frac{a+\sqrt{2}b}{c+\sqrt{2}d}\in \Q(\sqrt{2})$,
then we can write:
\[
\frac{a+\sqrt{2}b}{c+\sqrt{2}d}=\frac{(a+\sqrt{2}b)(c-\sqrt{2}d)}{(c+\sqrt{2}d)(c-\sqrt{2}d)}=
\frac{ac-2bd+(bc-ad)\sqrt{2}}{c^2-2d^2}.
\]
Hence
\[
\frac{a+\sqrt{2}b}{c+\sqrt{2}d}=\frac{ac-2bd}{c^2-2d^2}+\frac{bc-ad}{c^2-2d^2}\sqrt{2}\in \Q[\sqrt{2}].
\]
\end{sol}
\begin{sol}{xca:degree_of_x}
Let $f=f(x,K)$ be the minimal polynomial of $x$ over $K$ of degree $\deg(f)=n$.
We claim that $\{1,x,\dots, x^{n-1}\}$ is a basis of $K(x)$ as a $K$-vector space.
To prove that $\{1,x,\dots, x^{n-1}\}$ is a generating set, recall that $K(x)=K[x]$, since $x$ is algebraic over $K$.
Let $z\in K(x)=K[x]$, say $z=h(x)$ for some $h\in K[X]$.
Divide $h$ by $f$ to obtain polynomials $q,r\in K[X]$
such that $h=fq+r$, where either $r=0$ or $\deg r<\deg f=n$. Then
\[
z=h(x)=f(x)q(x)+r(x)=r(x).
\]
Write $r=\sum_{i=0}^{n-1}c_iX^i$ for some $c_0,\dots,c_{n-1}\in K$.
Thus $z=\sum_{i=0}^{n-1}a_ix^i\in \langle 1,x,\dots,x^{n-1}\rangle$.
We now prove that $\{1,x,\dots, x^{n-1}\}$ is linearly independent. If not,
there exists a linear combination
\[
0=\sum_{i=0}^{n-1}a_ix^i
\]
with $a_0,\dots,a_{n-1}\in K$ not all zero.
Then $h(X)=\sum_{i=0}^{n-1}a_iX^i\in K[X]\setminus\{0\}$
has $x$ as a root and
\[
n=\deg(f)\leq \deg(h)\leq n-1,
\]
a contradiction.
\end{sol}
\begin{sol}{xca:algebraic}
$a$ is algebraic over $K$,
so, by Theorem \ref{thm:simple extesnions},
it has finite degree over $K$
and $K[a]=K(a)$.
$b$ is algebraic over $K$,
so it is also algebraic over $K(a)$, hence it has finite degree over $K(a)$ and
$K(a)[b]=K(a,b)$.
This implies that the extension
$K(a,b)/K$ is a finite extension
since it is a tower of finite extensions.
Hence, by Corollary \ref{cor:finite=>algebraic}, $K(a,b)/K$ is an algebraic extension.
Therefore, since $a+b,ab\in K(a,b)$,
this implies that $a+b$ and $ab$
are algebraic over $K$.
\end{sol}
\begin{sol}{xca:finite type}
Assume that $K(S)/K$ is algebraic, then, by Corollary \ref{cor:finite type algebraic},
$x$ is algebraic over $K$ for all $x\in S$.
By Corollary \ref{cor:finite type finite}, we conclude that $K(S)/K$ is finite.
On the other hand, if $K(S)/K$ is finite, then
$K\subseteq K(x)\subseteq K(S)$ for all $x\in S$, so
$K(x)/K$ is finite for all $x\in S$.
Then, by Theorem \ref{thm:simple extesnions},
$x$ is algebraic over $K$ for all $x\in S$.
Hence, by Corollary \ref{cor:finite type algebraic}, $K(S)/K$ is algebraic.
\end{sol}
\begin{sol}{xca:degree of sqrt[3]2}
$\sqrt[3]{2}$ is a root of the monic polynomial $f=X^3-2\in \Q[X]$.
Therefore $\sqrt[3]{2}$ is algebraic over $\Q$
and $\Q[\sqrt[3]{2}]=\Q(\sqrt[3]{2})$.
In Exercise \ref{xca: X^3-2}, we proved that
$f$ is irreducible in $\Q[X]$.
Hence $f$ is the minimal polynomial of $\sqrt[3]{2}$
over $\Q$ and, by Theorem \ref{thm:simple extesnions},
$[\Q(\sqrt[3]{2}):\Q]=\deg f=3$.
\end{sol}
\begin{sol}{xca:Q(i,sqrt2)}
$i$ is a root of the monic polynomial $X^2+1\in\Q[X]$
and $\sqrt{2}$ is a root of the monic polynomial of
$X^2-2\in\Q[X]$.
So, by Corollary \ref{cor:finite type finite},
$\Q[i,\sqrt{2}]=\Q(i,\sqrt{2})$ and it is algebraic over $\Q$.
By Eisenstein's criterion with $p=2$,
$X^2-2$ is irreducible in $\Q[X]$, so
$[\Q(\sqrt{2}):\Q]=2$.
Since $i$ is a root of $X^2+1\in\Q[X]$,
then $[E:\Q(\sqrt{2})]\leq 2$.
Moreover, $i\notin \R\supseteq \Q(\sqrt{2})$.
Therefore $[E:\Q(\sqrt{2})]=2$ and,
by Proposition \ref{pro:multiplicativity of degree},
\[
[E:\Q]=[E:\Q(\sqrt{2})][\Q(\sqrt{2}):\Q]=4.
\]
\end{sol}
\begin{sol}{xca:Q(sqrt2,sqrt[3]5)}\
\begin{enumerate}
\item
We know that $[\Q(\sqrt[3]{5}):\Q]$ is the same as
the degree of the minimal polynomial of $\sqrt[3]{5}$
over $\Q$.
Clearly $\sqrt[3]{5}$ is a root of $X^3-5\in\Q[X]$.
Moreover, by Eisenstein's criterion with
$p=5$, we get that $X^3-5$ is irreducible in $\Q[X]$.
Hence $f(\sqrt[3]{5},\Q)=X^3-5$ and $[\Q(\sqrt[3]{5}:\Q]=3$.
We also know that $X^2-2$ is the minimal polynomial of $\sqrt{2}$ over $\Q$.
So $[\Q(\sqrt{2}):\Q]=2$.
Therefore we are in the following situation:
\
\begin{center}
\begin{tikzcd}
& {E=\Q(\sqrt[3]{5},\sqrt{2})}\arrow[rd,no head]\\
{\Q(\sqrt[3]{5})}\arrow[ru,no head,"\leq 2"]&& {\Q(\sqrt{2})}\arrow[ld,no head,"2"] \\
& {\Q}\arrow[lu,no head,"3"]
\end{tikzcd}
\end{center}
so on the one hand
\[
[E:\Q]=[E:\Q(\sqrt{2})][\Q(\sqrt{2}):\Q]=[E:\Q(\sqrt{2})]2
\]
and on the other hand
\[
[E:\Q]=[E:\Q(\sqrt[3]{5})][\Q(\sqrt[3]{5}):\Q]=[E:\Q(\sqrt[3]{5})]3\leq 2\cdot 3=6.
\]
Therefore $2$ and $3$ divide $[EF:\Q]\leq 6$.
Hence the only possibility is that $[E:\Q]=6$.
\item Clearly $\Q(\sqrt{2}+\sqrt[3]{5})\subseteq E$.
On the other hand, let $\alpha=\sqrt{2}+\sqrt[3]{5}$.
Then
\[
5=(\alpha-\sqrt{2})^3=\alpha^3-3\sqrt{2}\alpha^2+6\alpha-2\sqrt{2},
\]
which implies that
\[
\sqrt{2}=\frac{6\alpha-5}{3\alpha^2+2}\in\Q(\alpha).
\]
Moreover, $\sqrt[3]{5}=\alpha-\sqrt{2}\in\Q(\alpha)$, hence $E=\Q(\alpha)$.
\item From the previous part of this exercise
we get that
\[
\sqrt{2}(3\alpha^2+2)=\alpha^3+6\alpha-5.
\]
Hence, squaring both sides of the previous equality,
we obtain
\[
18\alpha^4+24\alpha^2+8=\alpha^6+36\alpha^2+25+12\alpha^4-10\alpha^3-60\alpha.
\]
Therefore $\alpha$ is a root of the
polynomial
\[
f(X)=X^6-6X^4-10X^3+12X^2-60X+17.
\]
Moreover, from the first part, we know that
\[
[E:\Q]=6=\deg f.
\]
Hence $f(\alpha,\Q)=f(X)$.
\end{enumerate}
\end{sol}
\begin{sol}{xca:isqrt[4]3}
Let $\alpha=\sqrt[4]{3}i$. Observe that $\alpha^2 = -\sqrt{3}$,
so $\Q(\sqrt{3})\subseteq \Q(\alpha)$ and
\[
2\geq \deg f(\alpha,\Q(\sqrt{3}))=[\Q(\alpha):\Q(\sqrt{3})].
\]
Moreover $\alpha\notin\R$,
while $\Q(\sqrt{3})\subseteq \R$.
So $[\Q(\alpha):\Q(\sqrt{3})]>1$,
hence $[\Q(\alpha):\Q(\sqrt{3})]=2$ and
$$f(\alpha,\Q(\sqrt{3}))=X^2+\sqrt{3}.$$
Note that the minimal polynomial of $\alpha$
over $\Q(i)$ has degree $[\Q(\sqrt[4]{3}i,i):\Q(i)]$.
Moreover, $\Q(\sqrt[4]{3}i,i)=\Q(\sqrt[4]{3},i)$ and
$$f(\alpha,\Q)=f(\sqrt[4]{3},\Q)=X^4+3,$$
since $X^4+3$ is an irreducible
(due to Eisenstein with $p=3$)
monic polynomial that has $\alpha$ and $\sqrt[4]{3}$
as roots.
Therefore $[\Q(\sqrt[4]{3}):\Q]=[\Q(\sqrt[4]{3}i):\Q]=4$.
Since $\Q(\sqrt[4]{3})\subseteq\R$, while $\sqrt[4]{3}i\notin\R$,
we obtain that $1<[\Q(\sqrt[4]{3}i,i):\Q(\sqrt[4]{3})]\leq [\Q(i):\Q]=2$.
\begin{center}
\begin{tikzcd}
& {\Q(\sqrt[4]{3}i,i)=\Q(\sqrt[4]{3},i)}\arrow[rd,no head]\\
{\Q(\sqrt[4]{3})}\arrow[ru,no head,"2"]& & {\Q(i)}\arrow[ld,no head,"2"] \\
& {\Q}\arrow[lu,no head,"4"]
\end{tikzcd}
\end{center}
Hence $[\Q(\sqrt[4]{3}i,i):\Q]=8$ and $[\Q(\sqrt[4]{3}i,i):\Q(i)]=4$, which means that $\deg f(\sqrt[4]{3}i,\Q(i))=4$.
But $f(\sqrt[4]{3}i,\Q(i))$ divides $f(\alpha,\Q)=X^4+3,$ so
$$f(\sqrt[4]{3}i,\Q(i))=X^4+3.$$
\end{sol}
\begin{sol}{xca:sqrt{2}+sqrt[3]{5}i}
Let $\alpha=\sqrt{2}+i\sqrt[3]{5}$ and $E=\Q(\alpha,i)$.
The minimal polynomial of $\alpha$ over $\Q(i)$ has
degree $[E:\Q(i)]$.
Observe that, since $\alpha-\sqrt{2}=i\sqrt[3]{5}$,
\[
\alpha^3-3\sqrt{2}\alpha^2+6\alpha-2\sqrt{2}=-i5.
\]
Hence
\[
\sqrt{2}=\frac{\alpha^3\alpha^2+6\alpha+i5}{3\alpha^2+2}\in E
\]
and so also $\sqrt[3]{5}=\frac{\alpha-\sqrt{2}}{i}\in E$.
Therefore $E=\Q(\sqrt{2},\sqrt[3]{5},i)$.
To compute $[E:\Q(i)]$ we first compute $[\Q(\sqrt{2},i):\Q(i)]$
and $[\Q(\sqrt[3]{5},i):\Q(i)]$.
We know that $i$ has degree 2 over $\Q$,
so $[\Q(\sqrt[3]{5},i):\Q(\sqrt[3]{5})]$ and
$[\Q(\sqrt{2},i):\Q(\sqrt{2})]$ are both at most 2.
Moreover $\Q(\sqrt[3]{5})$ and $Q(\sqrt{2})$ are contained in $\R$,
while $i\notin\R$.
Hence
\[
[\Q(\sqrt[3]{5},i):\Q(\sqrt[3]{5})]=2=[\Q(\sqrt{2},i):\Q(\sqrt{2})].
\]
\begin{center}
\begin{tikzcd}
& {\Q(\sqrt{2},i)}\arrow[rd,no head]\\
{\R\supseteq\Q(\sqrt{2})}\arrow[ru,no head,"2"]& & {\Q(i)}\arrow[ld,no head,"2"] \\
& {\Q}\arrow[lu,no head,"2"]
\end{tikzcd}
\begin{tikzcd}
& {\Q(\sqrt[3]{5},i)}\arrow[rd,no head,"2"]&\\
{\Q(i)}\arrow[ru,no head,""]& & {\Q(\sqrt[3]{5})\subseteq \R}\arrow[ld,no head,"3"] \\
& {\Q}\arrow[lu,no head,"2"]
\end{tikzcd}
\end{center}
Therefore $[\Q(\sqrt{2},i):\Q(i)]=2$
and $[\Q(\sqrt[3]{5},i):\Q(i)]=3$.
\begin{center}
\begin{tikzcd}
& {\Q(\alpha,i)=\Q(\sqrt{2},\sqrt[3]{5},i)}\arrow[rd,no head]\\
{\Q(\sqrt{2},i)}\arrow[ru,no head,""]& & {\Q(\sqrt[3]{5},i)}\arrow[ld,no head,"3"] \\
& {\Q(i)}\arrow[lu,no head,"2"]
\end{tikzcd}
\end{center}
So $[\Q(\alpha, i):\Q(i)]$ is divisible by 2 and 3 and it is also at most 6.
Therefore the degree of the minimal polynomial
of $\alpha$ over $\Q(i)$ is $[\Q(\alpha,i):\Q(i)]=6$.
We already got $\alpha^3-3\sqrt{2}\alpha^2+6\alpha-2\sqrt{2}=-i5$,
so $2(3\alpha^2+2)^2=(\alpha^3\alpha^2+6\alpha+i5)^2,
$
i.e.
\[
\alpha^6-6\alpha^4+10i\alpha^3+12\alpha^2+60i\alpha-33=0.
\]
This means that $\alpha$ is a root of the polynomial
\[
f(X)=X^6-6X^4+10iX^3+12X^2+60iX-33\in\Q(i)[X].
\]
Since $f$ is also monic and of degree 6, we can deduce that
$f(\alpha,\Q(i))=f$.
\end{sol}
\begin{sol}{xca:tower of finite extensions}
By Proposition \ref{pro:multiplicativity of degree},
we know that $[E:K]=[E:F][F:K]$, so
$[E:K]$ is finite if and only if $[E:F]$ and $[F:K]$ are finite.
\end{sol}
\begin{sol}{xca:composite generated by products}
Let $P$ be the set
$\left\{\sum_{i=1}^me_if_i:m\in\Z_{>0},e_i\in E,f_i\in F\text{ for all $i\in\{1,\dots,m\}$}\right\}$.
If $\sum_{i=1}^me_if_i\in P$, it is a $E$-linear combination
of elements in $F$, so in particular it is an element
in $E(F)=EF$. Hence $P\subseteq EF$.
Moreover, since $E/K$ and $F/K$ are algebraic extensions,
every element in $E\cup F$ is algebraic over $K$.
So $EF=K(E\cup F)=K[E\cup F]$.
Let $x\in EF$, then $x=f(\alpha_1,\dots,\alpha_k)$,
for some polynomial $f\in K[X_1,\dots X_k]$
and $\alpha_1,\dots,\alpha_k\in E\cup F$.
We can then split the polynomial in $f=p+q$ so that
$x=p(e'_1,\dots,e'_n)+q(f'_1,\dots,f'_m)$,
where $e'_i\in E$ and $f'_j\in F$ and $p,q\in K[X_1,\dots X_k]$.
Since $E$ and $F$ are fields, so closed under multiplication,
we can write $x$ as $x=\sum_{i=1}^Nk_ie_i+\sum_{j=1}^Mh_jf_j$,
for some $k_i,h_j\in K$, $e_i\in E$ and $f_j\in F$.
Then in particular $k_i\in K\subseteq F$ and $h_j\in K\subseteq E$, hence $x\in P$ and $EF\subseteq P$.
\end{sol}
\begin{sol}{xca:sqrt(2),sqrt(3)}
We know that the minimal polynomials over $\Q$ are
$f(\sqrt{2},\Q)=X^2-2$ and $f(\sqrt{3},\Q)=X^2-3$.
So $[\Q(\sqrt{2}):\Q]=[\Q(\sqrt{3}):\Q]=2$.
Moreover,
\[
[\Q(\sqrt{2},\sqrt{3}):\Q(\sqrt{3})]\leq [\Q(\sqrt{2}):\Q]=2.
\]
It remains to check whether $\sqrt{2}\in \Q(\sqrt{3})$ or not.
A $\Q$ basis of $\Q(\sqrt{3})$ is $\{1,\sqrt{3}\}$.
If $\sqrt{2}\in \Q(\sqrt{3})$, then $\sqrt{2}=a+b\sqrt{3}$ for
some $a,b\in\Q$, so $2=a^2+2ab\sqrt{3}+3b^2$.
Using the $\Q$-linear independence of $\{1,\sqrt{3}\}$,
we get that $2ab=0$ and $2=a^2+3b^2$.
Therefore either $a=0$ and $2/3=b^2$,
or $b=0$ and $2=a^2$.
But both cases are not possible because neither $2$ nor $2/3$ are
squares in $\Q$.
We conclude that $\sqrt{2}\notin\Q(\sqrt{3})$.
So $[\Q(\sqrt{2},\sqrt{3}):\Q(\sqrt{3})]=2$ and
$[\Q(\sqrt{2},\sqrt{3}):\Q]=4$.
\begin{center}
\begin{tikzcd}
& {\Q(\sqrt{2},\sqrt{3})}\arrow[rd,no head]\\
{\Q(\sqrt{2})}\arrow[ru,no head,""]& & {\Q(\sqrt{3})}\arrow[ldd,no head,"2"]\arrow[ld,no head,""] \\
& {\Q(\sqrt{2})\cap\Q(\sqrt{3})}\arrow[lu,no head,""]\\
& {\Q}\arrow[luu,no head,"2"]\arrow[u,no head]
\end{tikzcd}
\end{center}
Similarly,
\[
[\Q(\sqrt{2}):\Q(\sqrt{2})\cap\Q(\sqrt{3})]\leq [\Q(\sqrt{2}):\Q]=2,
\]
but $\sqrt{2}\notin\Q(\sqrt{2})\cap\Q(\sqrt{3})$. Thus
\[
[\Q(\sqrt{2}):\Q(\sqrt{2})\cap\Q(\sqrt{3})]=2
\]
and hence $[\Q(\sqrt{2})\cap\Q(\sqrt{3}):\Q]=1$. Therefore $\Q(\sqrt{2})\cap\Q(\sqrt{3})=\Q$.
\end{sol}
\begin{sol}{xca:sqrt[3]2,3rd root of 1}
The minimal polynomial of $\sqrt[3]{2}$ is $X^3-2$
since it is monic, irreducible (by Eisenstein) and has $\sqrt[3]{2}$
as a root. Hence $[\Q(\sqrt[3]{2}):\Q]=3$.
$\xi\neq 1$ and it is a root of the polynomial
\[
X^3-1=(X-1)(X^2+X+1),
\]
so it is a root of $X^2+X+1$, which is monic and
irreducible (it is of degree 2 and the roots are not in $\Q)$.
Hence $f(\xi,\Q)=X^2+X+1$ and $[\Q(\xi):\Q]=2$.
We also have that $[\Q(\sqrt[3]{2},\xi):\Q]\leq 6$.
\begin{center}
\begin{tikzcd}
& {\Q(\sqrt[3]{2},\xi)}\arrow[rd,no head]\\
{\Q(\sqrt[3]{2})}\arrow[ru,no head,""]& & {\Q(\xi)}\arrow[ldd,no head,"2"]\arrow[ld,no head,""] \\
& {\Q(\sqrt[3]{2})\cap\Q(\xi)}\arrow[lu,no head,""]\\
& {\Q}\arrow[luu,no head,"3"]\arrow[u,no head]
\end{tikzcd}
\end{center}
By multiplicity of the degree of extensions, we obtain that
6 has to divide $[\Q(\sqrt[3]{2},\xi):\Q]\leq 6$ and
$[\Q(\sqrt[3]{2})\cap\Q(\xi):\Q]$ has to divide 2 and 3.
Therefore
\[
[\Q(\sqrt[3]{2},\xi):\Q]=6 \text{ and }
[\Q(\sqrt[3]{2})\cap\Q(\xi):\Q]=1,
\]
which means that
$\Q(\sqrt[3]{2})\cap\Q(\xi)=\Q$.
\end{sol}
\begin{sol}{xca: shift for algebraic}
By definition $EF=E(F)$. If $F/K$ is algebraic, then $EF$ is
generated by algebraic elements over $K$, so also over $E$.
Hence $EF/E$ is an algebraic extension.
\end{sol}
\begin{sol}{xca: shift for finite}
If $F/K$ is finite,
then $F$ is generated by a finite number of algebraic elements over $K$.
The same elements are algebraic over $E$ and generate $EF=E(F)$ over $E$.
Hence $EF/E$ is a finite extension and $[EF:E]\leq [F:K]$.
\end{sol}
\begin{sol}{xca:C/K_bijective}
$\varphi$ is a field homomorphism,
so it is injective.
Take $\sigma:\varphi(C)\to C$ a left inverse
of $\varphi$, i.e such that $\sigma\circ\varphi=\id$.
Then $\sigma$ is a surjective field homomorphism (it is actually an isomorphism).
Moreover $C/K$ is algebraic and $\varphi(C)\subseteq C$,
so, by Proposition \ref{pro:Artin}, there exists
a field homomorphism $\psi: C\to C$
such that $\psi|_{\varphi(C)}=\sigma$.
But then $\psi$ is injective and
$\psi(x)=\sigma(\varphi(\psi(x)))=\psi(\varphi(\psi(x)))$, for every $x\in C$.
So $x=\varphi(\psi(x))$ for every $x\in C$.
Hence $\varphi(C)=C$, $\psi=\sigma$ and $\varphi$ is an isomorphism.
\end{sol}
\begin{sol}{xca:dec field of X^3-X-1 over Z3}
We can easily check that $f$ has no roots
in $\Z/3$, so, having degree 3, it is
irreducible over $\Z/3$.
Note also that $f = X^3-X-1 = X(X-1)(X+1) -1$
So if $\alpha\in E$ is a root of $f$,
then
\[
f(\alpha+1)=
(\alpha+1)\alpha(\alpha+2)-1=
(\alpha+1)\alpha(\alpha-1)-1=
f(\alpha)=0,
\]
\[
f(\alpha-1)=
(\alpha-1)(\alpha-2)\alpha-1=
(\alpha-1)(\alpha+1)\alpha-1
f(\alpha)=0.
\]
This means that $\alpha+1$ and $\alpha-1$ are also roots of $f$.
Hence $E=\Z/3(\alpha)$ and
$f(\alpha,\Z/3)=f$,
so $[E:\Z/3]=3$.
\end{sol}
\begin{sol}{xca:dec field X^4-5X^2+5}
Note that, since $f=X^4-5X^2+5$ is an even polynomial
if $\alpha\in \C$ is a root of $f$,
then also $-\alpha$ is a root of $f$.
Hence, given two roots $\alpha,\beta\in \C$
such that $\beta\neq-\alpha$,
we have that the decomposition field of $f$ over $\Q$ is
$E=\Q(\alpha,-\alpha,\beta,-\beta)$.
But $-\alpha,-\beta\in \Q(\alpha,\beta)\subseteq E$
and so
\[
E=\Q(\alpha,-\alpha,\beta,-\beta)\subseteq \Q(\alpha,\beta)\subseteq\Q(\alpha,-\alpha,\beta,-\beta)=E,
\]
which means that $E=\Q(\alpha,\beta)$.
Moreover we can decompose $f$ in $\C[X]$ as
\[
(X-\alpha)(X+\alpha)(X-\beta)(X+\beta)=(X^2-\alpha^2)(X^2-\beta^2)=X^4-(\alpha^2+\beta^2)X^2+\alpha^2\beta^2.
\]
This implies in particular that $\alpha^2\beta^2=5$, hence $\beta=\pm \frac{\sqrt{5}}{\alpha}\in \Q(\alpha,\sqrt{5})$.
Therefore $E=\Q(\alpha,\beta)\subseteq \Q(\alpha,\sqrt{5})$.
On the other hand $\sqrt{5}=\pm\alpha\beta\in\Q(\alpha,\beta)$,
hence $\Q(\alpha,\sqrt{5})\subseteq\Q(\alpha,\beta)=E$.
So we can conclude that $E=\Q(\alpha,\sqrt{5})$.
Using the multiplicative of the degree of finite extension we get that
\[
[E:\Q]=[E:\Q(\alpha)][\Q(\alpha):\Q].
\]
But $[\Q(\alpha):\Q]=\deg(f(\alpha,\Q))$.
Using Eisenstein criterion (Exercise \ref{xca:Eisenstein's criterion}) with $p=5$,
we have that $f$ is irreducible (and monic), so $f=f(\alpha,\Q)$.
Thus $[\Q(\alpha):\Q]=\deg f=4$.
It remains to compute $[E:\Q(\alpha)]=[\Q(\alpha,\sqrt{5}):\Q(\alpha)]$.
We have the following situation:
\[
\begin{tikzcd}
& {E=\Q(\alpha,\sqrt{5})}\arrow[rd,no head]\\
{\Q(\alpha)}\arrow[ru,no head,"\leq 2"]&& {\Q(\sqrt{5})}\arrow[ld,no head,"2"] \\
& {\Q}\arrow[lu,no head,"4"]
\end{tikzcd}
\]
Observe that $\Q(\alpha,\sqrt{5})$ is equal to the composite of $\Q(\alpha)$ and $\Q(\sqrt{5})$.
We can use the property of composite extension,
$[LF:L]\leq[F:K]$, to deduce that
\[
[\Q(\alpha,\sqrt{5}):\Q(\alpha)]\leq [\Q(\sqrt{5}):\Q]=2.
\]
The last equality is because $f(\sqrt{5},\Q)=X^2-5$,
as it is monic has $\sqrt{5}$ as a root
and it's irreducible
(due to Eisenstein's criterion or
because it is of degree 2 with 2 non-rational roots).
Finally, we want to understand whether $[\Q(\alpha,\sqrt{5}):\Q(\alpha)]$ is 1 or 2.
Note that $\alpha^4-5\alpha^2+5=0$, so we can solve the equation for
$\alpha^2$ as it is a root of $X^2-5X+5$, i.e.
\[
\alpha^2=\frac{5\pm \sqrt{25-20}}{2}=\frac{5\pm \sqrt{5}}{2},
\]
hence $\sqrt{5}=\pm (2\alpha^2-5)\in\Q(\alpha)$.
So $\Q(\alpha,\sqrt{5})\subseteq\Q(\alpha)\subseteq \Q(\alpha,\sqrt{5})$,
which means that $E=\Q(\alpha)$ and
$[E:\Q]=[\Q(\alpha):\Q]=4$.
\end{sol}
\begin{sol}{xca:Q(sqrt[3]{2},xi) normal}
First of all, note that $\sqrt[3]{2}$ is a root of
the polynomial $f(X)=X^3-2$.
To prove that $\Q(\sqrt[3]{2},\xi)$ is a normal extension
we use Proposition \ref{pro:normal<=>dec},
so it is enough to prove
that $\Q(\sqrt[3]{2},\xi)$ is the decomposition field of $f$.
We know that the decomposition field $E$ of $f$ over $\Q$ is
$\Q$ extended with the roots of $f$, i.e.
$E=\Q(\sqrt[3]{2},\sqrt[3]{2}\xi,\sqrt[3]{2}\xi^2)$.
But it's easy to see that actually
\[
\Q(\sqrt[3]{2},\xi)=\Q(\sqrt[3]{2},\sqrt[3]{2}\xi,\sqrt[3]{2}\xi^2)=E.
\]
The inclusion $\subseteq$ is because $\sqrt[3]{2}, \xi=\frac{\sqrt[3]{2}\xi}{\sqrt[3]{2}}\in E$.
Vice versa $\supseteq$ is due to the fact that
the roots of $f$ are products of $\sqrt[3]{2}$ and $\xi$, elements in $\Q(\sqrt[3]{2},\xi)$.
\end{sol}
\begin{sol}{xca:Q[sqrt[4]{7}+sqrt{2}]}
Let $\alpha=\sqrt[4]{7}+\sqrt{2}$. Then $(\alpha - \sqrt{2})^4 -7 = 0$.
By expanding the left side, we get
\[
0 =\alpha^4 - 4\sqrt{2}\alpha^3 + 12 \alpha^2 - 8\sqrt{2}\alpha - 3
= (\alpha^4 + 12\alpha^2 - 3) - (4 \alpha^3 + 8 \alpha )\sqrt{2}.
\]
But $4 \alpha^3 + 8 \alpha = 4\alpha (\alpha^2+2) \neq 0$, otherwise $\alpha\in\{0,\pm i\sqrt{2})$.
Therefore $\sqrt{2}=\frac{\alpha^4 + 12\alpha^2 - 3}{4 \alpha^3 + 8 \alpha}\in \Q(\alpha) $.
This allows us to prove that $\Q(\sqrt{2} , \sqrt[4]{7}) = \Q(\alpha)$.
From the definition of $\alpha$ it is clear that
\[
\Q(\alpha) \subseteq \Q(\sqrt{2} , \sqrt[4]{7}).
\]
On the other hand, we just proved that $\sqrt{2} \in \Q(\alpha)$.
As $\sqrt[4]{7} = \alpha - \sqrt{2} \in \Q(\alpha)$,
we also see that $\sqrt[4]{7} \in \Q(\alpha)$.
It follows that $\Q(\sqrt{2} , \sqrt[4]{7}) \subseteq \Q(\alpha)$.
Moreover, $\sqrt{2}\not\in \Q(\sqrt[4]{7})$.
Otherwise, as $[\Q(\sqrt[4]{7}):\Q] = 4$ and $[\Q(\sqrt{2}):\Q] = 2$
we would get that $[\Q(\sqrt[4]{7}):\Q(\sqrt{2})] = 2$.
Let $f(\sqrt[4]{7},\Q(\sqrt{2})) = X^2 + \beta X + \gamma$,
with $\beta, \gamma \in \Q(\sqrt{2})$.
So
$$0=f(\sqrt[4]{7})=\sqrt{7} + \beta \sqrt[4]{7} + \gamma.$$
Therefore
$$\beta^2 \sqrt{7} = (- \sqrt{7} - \gamma)^2 =7 + 2\gamma \sqrt{7} + \gamma^2.$$
Thus
\[
(\beta^2 - 2 \gamma)\sqrt{7}= \gamma^2 + 7.
\]
But $\beta^2 - 2 \gamma\neq 0$ because
$\gamma^2 + \beta \gamma + \frac{\beta^2}{2} = 0$
holds only for $\gamma =\frac{\beta}{2} (-1 \pm i)\in \C\setminus\R$,
which is clearly not in $\Q(\sqrt{2})$.
Thus
$\sqrt{7} = \frac{\gamma^2 + 7}{\beta^2 - 2 \gamma} \in \Q(\sqrt{2})$, a contradiction.
To sum up we have that $\sqrt{2}\not\in \Q(\sqrt[4]{7})$ and
\[
\begin{tikzcd}
& {E=\Q(\alpha)=\Q(\sqrt{2},\sqrt[4]{7})}\arrow[rd,no head]\\
{\Q(\sqrt{2})}\arrow[ru,no head,]&& {\Q(\sqrt[4]{7})}\arrow[ld,no head,"4"] \\
& {\Q}\arrow[lu,no head,"2"]
\end{tikzcd}
\]
\begin{enumerate}
\item We know that $\sqrt[4]{7} \in \Q(\alpha)$
which has minimal polynomial $f(\sqrt[4]{7},\Q) = x^4-7$.
One root of this polynomial is $i\sqrt[4]{7}$.
This root is not in $\Q(\alpha)\subseteq \R$ as it is in $\C\setminus\R$.
Therefore $\Q(\alpha)/\Q$ is not normal by Proposition \ref{pro:linear_factorization}.
\item As $\sqrt{2} \not\in \Q(\sqrt[4]{7})$,
we see that $[\Q(\alpha):\Q(\sqrt[4]{7})] > 1$.
On the other hand,
$$[\Q(\alpha):\Q(\sqrt[4]{7})] \leq [\Q(\sqrt{2}:\Q]=2,$$
which proves that $[\Q(\alpha):\Q(\sqrt[4]{7})] = 2$.
Therefore,
\[
[E:\Q]=[\Q(\alpha):\Q] = [\Q(\alpha):\Q(\sqrt[4]{7})] \cdot [\Q(\sqrt[4]{7}): \Q] = 2 \cdot 4 = 8.
\]
\item Let $\sigma\in G=\Gal(E/\Q)$.
Since $E=\Q(\sqrt{2},\sqrt[4]{7})$ and
$\sqrt{2}$ and $\sqrt[4]{7}$ are independent
because $\sqrt{2}\not\in \Q(\sqrt[4]{7})$,
we know that $\sigma$ is completely determined
by $\sigma(\sqrt{2})$ and $\sigma(\sqrt[4]{7})$.
By Proposition \ref{pro:conjugate},
$\sigma(\sqrt{2})\in E$ has to be a root of $f(\sqrt{2},\Q)=X^2-2$
and $\sigma(\sqrt[4]{7})\in E$ has to be a root of $f(\sqrt[4]{7},\Q)=X^4-7$.
So $\sigma(\sqrt{2})=\pm\sqrt{2}$ and, since $E\subseteq \R$,
$$\sigma(\sqrt[4]{7})\in E\cap\{\sqrt[4]{7}i^j\mid j\in\{0,1,2,3\}\}=\{\pm\sqrt[4]{7}\}.$$
Therefore $G$ contains 4 elements $\sigma_{k,l}$ for $k,l\in \Z/2$
such that $\sigma_{k,l}(\sqrt{2})=(-1)^k\sqrt{2}$
and $\sigma_{k,l}(\sqrt[4]{7})=(-1)^l\sqrt[4]{7}$.
This gives directly the isomorphism between $G$ and $\Z/2\times\Z/2$.
\end{enumerate}
\end{sol}
\begin{sol}{xca:dim}
Let $\{v_i:i\in I\}$ be a basis of $V$ over $K$. For each $i\in I$
let $f_i\colon V\to F$, $f_i(v_j)=\delta_{ij}$. Then $\{f_i:i\in I\}$ is linearly
independent over $F$. In fact, let
$\sum a_if_i=0$, where each $a_i\in F$. Then
$a_i=0$ for almost all $i$. If $j\in I$, then
\[
0=\left(\sum a_if_i\right)(v_j)=\sum a_if_i(v_j)=a_j.
\]
Now assume that $\dim_KV=n$. Let $\{v_1,\dots,v_n\}$ be a basis of $V$ over $K$.
We claim that $\{f_1,\dots,f_n\}$ is a basis of $\Hom_K(V,F)$ over $F$. If
$g\in\Hom_K(V,F)$, then $g=\sum g(v_i)f_i$. If $1\leq k\leq n$, then
\[
\left(\sum g(v_i)f_i\right)(v_k)=\sum g(v_i)f_i(v_k)=g(v_k).
\]
\end{sol}
\begin{sol}{xca:gamma_C}
We need to find a bijective map
\[
\Hom(E/K,C/K)\to\Hom(E/K,C_1/K).
\]
If $\sigma\in\Hom(E/K,C/K)$, then $\theta^{-1}\sigma\in\Hom(E/K,C_1/K)$.
If $\varphi\in\Hom(E/K,C_1/K)$, then $\theta\varphi\in\Hom(E/K,C/K)$. The
maps $\sigma\mapsto\theta^{-1}\sigma$ and
$\varphi\mapsto\theta\varphi$ are inverse to each other.
\end{sol}
\begin{sol}{xca:order_reversing}
We first prove that for every order
reversing function $\varphi$
and every element $s,t$ in its domain,
\[
\varphi(s\vee t)\leq \varphi(s)\wedge \varphi(t) \text{ and }
\varphi(s)\vee \varphi(t)\leq \varphi(s\wedge t).
\]
Since that $s\leq s\vee t$
and $t\leq s\vee t$ and $\varphi$
is order reversing,
we have that $\varphi(s\vee t)\leq \varphi(s)$
and $\varphi(s\vee t)\leq \varphi(t)$.
Hence $\varphi(s\vee t)\leq \varphi(s)\wedge \varphi(t).$
Moreover $s\wedge t\leq s$
and $s\wedge t\leq t$.
So $\varphi(s)\leq \varphi(s\wedge t)$ and $\varphi(t)\leq \varphi(s\wedge t)$.
Hence
$\varphi(s)\vee \varphi(t)\leq \varphi(s\wedge t).$
We can now apply this result
for $\varphi=f$, $s=x$ and $t=y$
obtaining that
\[
f(x\vee y)\leq f(x)\wedge f(y), \quad
f(x)\vee f(y)\leq f(x\wedge y).
\]
On the other hand, for $\varphi=f^{-1}$,
$s=f(x)$ and $t=f(y)$,
we obtain that
\[
f^{-1}(f(x)\vee f(y))\leq
f^{-1}(f(x))\wedge f^{-1}(f(y))=
x\wedge y,
\]
and
\[
x\vee y=f^{-1}(f(x))\vee f^{-1}(f(y))\leq f^{-1}\big(f(x)\wedge f(y)\big).
\]
Thus, applying $f$, which is order reversing,
it implies that
\[
f(x\wedge y)\leq f\big(f^{-1}(f(x)\vee f(y))\big)=
f(x)\vee f(y)
\]
and
\[
f(x)\wedge f(y)=f\big(f^{-1}\big(f(x)\wedge f(y)\big)\big)\leq f(x\vee y).
\]
\end{sol}
\begin{sol}{xca:Cauchy+Galois}
Since $E/K$ is a Galois extension,
the order of $\Gal(E/K)$ is precisely $[E:K]=n$.
So, by Cauchy's Theorem, there exists a subgroup $S$
of $\Gal(E/K)$
of order $p$.
Then, by Galois' Theorem, the subextension
${}^SE/K$
has degree equal to the index of $S$,
which is $n/p$.
\end{sol}
\begin{sol}{xca:Sylow+Galois}
Since $E/K$ is a Galois extension,
$|\Gal(E/K)|=[E:K]=p^\alpha m$.
So, by Sylow's Theorem, there exists a subgroup $P$
of $\Gal(E/K)$
of order $p^{\alpha}$.
Then, by Galois' Theorem, the subextension
${}^PE/K$
has degree $(\Gal(E/K):P)=m$.
\end{sol}
\begin{sol}{xca:separable_charp}
Write $f=X^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0$. Then
\[
f'=nX^{n-1}+(n-1)a_{n-1}X^{n-2}+\cdots+2a_2X+a_1.
\]
Since $f$ is not separable, $f'=0$. Thus $n=ka_k=0$ in $K$ for all $k\in\{0,\dots,n-1\}$. This implies
that $p$ divides $k$ whenever $a_k\ne 0$. This means that the only terms in $f$ occur in degree
that are multiples of $p$. In particular, $n=pm$ for some $m$. Hence
\[
f=X^{pm}+a_{p(n-1)}X^{p(m-1)}+\cdots+a_pX^p+a_0=g(X^p)
\]
for some $g\in K[X]$.
\end{sol}
% \begin{sol}\
% \begin{enumerate}
% \item If $E/K$ is not separable,
% then $[E:K]_{\operatorname{ins}}=p^s$ for some $s$.
% Then the trace is zero because $K$ is of characteristic $p$.
% \item
% \end{enumerate}
% \end{sol}
\begin{sol}{xca:solvable+simple}
If $G$ is solvable, then $[G,G]$ is a proper normal subgroup of $G$.
Since $G$ is simple, $[G,G]=\{1\}$ and $G$ is abelian. Thus $G$ is cyclic of prime order.
\end{sol}
\begin{sol}{xca:diagonal}
Assume that $G$ is simple. Let $A=G\times\{1\}$, $B=\{1\}\times G$ and
$D=\{(x,x):x\in G\}$ the diagonal subgroup of $G\times G$.
Since
\[
(g,h)=(g,1)(1,h)=(gh^{-1},1)(h,h)
\]
it follows that $G=AB=AD$. Let $M$ be a subgroup of $G\times G$ that contains $D$.
Note that
\[
M=M\cap (G\times G)=M\cap AD=(M\cap A)D.
\]
Similarly, $M=(M\cap B)D$. Since $A$ is normal in $G\times G$, $M\cap A$ is normal in $G\times G$
and $(M\cap A)B$ is normal in $MB=G\times G$. Using the second isomorphism theorem, we see that
\[
M\cap A\simeq \frac{(M\cap A)B}{B}
\]
is a normal subgroup of $(G\times G)/B\simeq A$. Since $A\simeq G$ is simple, either
$M\cap A=\{1\}$ or $M\cap A=A$. Thus either $M=D$ or $BD=G\times G$. Therefore $D$ is maximal.
\end{sol}