-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path03.tex
247 lines (215 loc) · 8.73 KB
/
03.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
\section{Lecture -- Week 3}
%\begin{theorem}[Galois]
% \index{Galois' theorem}
% For every prime number $p$ and every $m\geq1$
% there exists a field of size $p^m$.
%\end{theorem}
%
%\begin{proof}
%\end{proof}
%
%
% Algebraic field extensions form a nice class of extensions. The same happens
% with finite field extensions.
% \begin{proposition}
% Let $F/K$ is a subextension of $E/K$. Then $E/K$ is algebraic (resp. finite)
% if and only if $E/F$ and $F/K$ are algebraic (resp. finite).
% \end{proposition}
% \begin{proof}
% From the formula
% $[E:K]=[E:F][F:K]$ it follows that
% $E/K$ is finite if and only if $E/F$ and $F/K$ are
% both finite.
% If $E/K$ is algebraic, then $E/F$ and $F/K$ are both algebraic. Conversely,
% suppose now that both $E/F$ and $F/K$ are algebraic. For $x\in E$ let $L$
% be the extension of $K$ generated by the coefficients of $f(x,F)$, the
% minimal polynomial of $x$ over $F$. Then $L$ is finite, as it is generated
% by finitely many algebraic elements. Moreover, $x$ is algebraic over $L$.
% Since $[L(x):K]=[L(x):L][L:K]<\infty$, $L(x)/K$ is algebraic. In
% particular, $x$ is algebraic over $K$.
% \end{proof}
% \begin{proposition}
% Let $E/K$ and $F/K$ be extensions, where both $E$ and $F$ are subfields of
% a field $L$. If $F/K$ is algebraic (resp. finite), then $EF/E$ is algebraic
% (resp. finite).
% \end{proposition}
% \begin{proof}
% Now we prove that if $F/K$ is finite, then $EF/E$ is finite. For that purpose,
% we show that $[EF:E]<[F:K]$. Recall that $EF=E(F)$. The elements of $F$ are
% algebraic over $K$, so they are algebraic over $E$. In particular, $E(F)/E$ is algebraic
% and $E(F)=E[F]$. Let $z\in EF$, say $z=\sum_i x_it_i$ for some $x_i\in E$ and $t_i\in F$.
% The extension $F/K$ is finite, so let $\{f_1,\dots,f_m\}$ be a basis of $F$ over $K$. Then
% each $t_i$ can be written as $t_i=\sum_ja_{ij}f_j$ for some $a_{ij}\in K$. Then
% \[
% z=\sum_j\left(\sum_i a_{ij}x_i\right)f_j
% \]
% and thus $\{f_1,\dots,f_m\}$ generates $EF$ as a vector space over $E$.
% \end{proof}
% \[\begin{tikzcd}
% & EF \\
% E && F \\
% & K
% \arrow[no head, from=1-2, to=2-1]
% \arrow[no head, from=2-1, to=3-2]
% \arrow[no head, from=3-2, to=2-3]
% \arrow[no head, from=1-2, to=2-3]
% \end{tikzcd}\]
\begin{lemma}
\label{lem:exists_bijective}
Let $\sigma\colon K\to L$ be a field homomorphism. Then there exists an extension
$E/K$ and a field isomorphism $\varphi\colon E\to L$
such that $\varphi|_K=\sigma$.
\end{lemma}
\begin{proof}
Note that $\sigma\colon K\to\sigma(K)$ is bijective.
Let $A$ be a set in bijection with $L\setminus\sigma(K)$ and disjoint with $K$.
Let $E=K\cup A$. If $\theta\colon A\to L\setminus\sigma(K)$ is bijective, then
let
\[
\varphi\colon E\to L,
\quad
\varphi(x)=\begin{cases}
\sigma(x) & \text{if $x\in K$},\\
\theta(x) & \text{if $x\in A$}.
\end{cases}
\]
Then $\varphi$ is a bijective map such that $\varphi|_K=\sigma$.
Transport the operations of $L$ onto $E$, that is
to define binary operations on $E$ as follows:
\begin{align*}
&(x,y)\mapsto x\oplus y=\varphi^{-1}(\varphi(x)+\varphi(y)), &&
(x,y)\mapsto x\odot y=\varphi^{-1}(\varphi(x)\varphi(y)).
\end{align*}
Then, for example,
\[
x\oplus y=\varphi^{-1}(\varphi(x)+\varphi(y))=\varphi^{-1}(\sigma(x)+\sigma(y))
=\varphi^{-1}(\sigma(x+y))=\varphi^{-1}(\varphi(x+y))=x+y
\]
for all $x,y\in K$.
\end{proof}
If $\sigma\colon A\to B$ is a ring homomorphism, then $\sigma$ induces a ring
homomorphism
\[
\overline{\sigma}\colon A[X]\to B[X],\quad
\sum_ia_iX^i\mapsto\sum_i\sigma(a_i)X^i.
\]
\begin{theorem}
Let $K$ be a field and $f\in K[X]$ be such that $\deg f>0$. Then
there exists an extension $E/K$ such that $f$ admits a root in $E$.
\end{theorem}
\begin{proof}
We may assume that $f$ is irreducible over $K$. Let $L=K[X]/(f)$ and
\[
\pi\colon K[X]\to L
\]
be the canonical map. Then $L$
is a field (the reader should explain why).
Let $\sigma\colon K\to L$, $a\mapsto \pi(aX^0)$, and
$g=\overline{\sigma}(f)\in L[X]$.
We claim that $\pi(X)$ is a root of $g$ in $L$. Suppose that $f=\sum_i a_iX^i$.
Then
\begin{align*}
g(\pi(X))&=\overline{\sigma}(f)(\pi(X))\\
&=\sum_i \sigma(a_i)\pi(X)^i
=\sum_i\pi(a_iX^0)\pi(X^i)=\pi(\sum a_iX^i)=\pi(f)=0.
\end{align*}
By Lemma \ref{lem:exists_bijective},
there exists an extension $E/K$ and an isomorphism $\varphi\colon E\to L$
such that $\varphi|_K=\sigma$. Note that
$\varphi(x)=0$ if and only if $x=0$. If $u=\pi(X)$, then $\varphi^{-1}(u)$ is a root of $f$ in $E$,
as
\begin{align*}
\varphi(f(\varphi^{-1}(u)))&=\varphi\left(\sum_ia_i\varphi^{-1}(u)^i\right)
=\varphi\left(\sum_ia_i\varphi^{-1}(u^i)\right)\\
&=\sum_i\varphi(a_i)u^i=\sum_i\sigma(a_i)u^i=g(u)=0.\qedhere
\end{align*}
\end{proof}
As a corollary, if $K$ is a field and $f_1,\dots,f_n\in K[X]$ are polynomials
of positive degree, then there exists an extension $E/K$ such that
each $f_i$ admits a root in $E$. This is proved by induction on~$n$.
\begin{definition}
A field $K$ is \emph{algebraically closed} if each $f\in K[X]$
of positive degree admits a root in $K$.
\end{definition}
The \emph{fundamental theorem of algebra} states that $\C$ is algebraically closed. A
typical proof uses complex analysis. Later we will give a proof of this result
using Galois theory.
\begin{proposition}
The following statements are equivalent:
\begin{enumerate}
\item $K$ is algebraically closed.
\item If $f\in K[X]$ is irreducible, then $\deg f=1$.
\item If $f\in K[X]$ is non-zero, then $f$ decomposes linearly in $K[X]$, that is
\[
f=a\prod_{i=1}^n(X-\alpha_i)^{m_i}
\]
for some $a\in K$ and $\alpha_1,\dots,\alpha_n\in K$.
\item If $E/K$ is algebraic, then $E=K$.
\end{enumerate}
\end{proposition}
\begin{proof}
$1)\implies 2\implies 3)$ are exercises.
Let us prove that $3)\implies
4)$. Let $x\in E$. Decompose $f(x,K)$ linearly in $K[X]$ as
\[
f(x,K)=a\prod_{i=1}^n(X-\alpha_i)^{m_i}
\]
and evaluate on $x$ to obtain that
$x=\alpha_j$ for some $j$.
To prove that $4)\implies 1)$ let $f\in K[X]$ be
such that $\deg f>0$. There exists an extension $E/K$ such that $f$ has a
root $x$ in $E$. The extension $K(x)/K$ is algebraic and hence $K(x)=K$, so
$x\in K$.
\end{proof}
\subsection{Artin's theorem}
\begin{definition}
An \emph{algebraic closure} of a field $K$ is an algebraic extension $C/K$
such that $C$ is algebraically closed.
\end{definition}
For example, $\C/\R$ is an algebraic closure but $\C/\Q$ is not.
\begin{proposition}
\label{pro:Artin}
Let $C$ be algebraically closed and $\sigma\colon K\to C$ be a field homomorphism. If $E/K$
is algebraic, then there exists a field homomorphism
$\varphi\colon E\to C$ such that
$\varphi|_K=\sigma$.
\end{proposition}
\begin{proof}
Suppose first that $E=K(x)$ and let $f=f(x,K)$. Let $\overline{\sigma}(f)\in C[X]$
and let $y\in C$ be a root of $\overline{\sigma}(f)$. If $z\in E$, then $z=g(x)$ for
some $g\in K[X]$. Let $\varphi\colon E\to C$, $z\mapsto \overline{\sigma}(g)(y)$.
The map $\varphi$ is well-defined. If $z=h(x)$ for some $h\in K[X]$, then
\[
0=g(x)-h(x)=(g-h)(x)
\]
and thus $f$ divides $g-h$. In particular, $\overline{\sigma}(f)$ divides
$\overline{\sigma}(g-h)=\overline{\sigma}(g)-\overline{\sigma}(h)$ and hence
\[
(\overline{\sigma}(g)-\overline{\sigma}(h))(y)=0.
\]
It is an exercise to show that the map $\varphi$ is a ring homomorphism.
Let $a\in K$. It follows that $\varphi|_K=\sigma$, as
\[
\varphi(a)=\overline{\sigma}(aX^0)(y)=\sigma(a)
\]
%and
%$\varphi(x)=\overline{\sigma}(X)(y)=y$.
Let us now prove the proposition in full generality. Let
$X$ be the set of pairs $(F,\tau)$, where $F$ is a subfield of $E$ that contains $K$ and
$\tau\colon F\to C$ is a field homomorphism such that $\tau|_K=\sigma$. Note that
$(K,\sigma)\in X$, so $X$ is non-empty. Moreover, $X$ is partially ordered by
\[
(F,\tau)\leq (F_1,\tau_1)\Longleftrightarrow F\subseteq F_1\text{ and }\tau_1|_F=\tau.
\]
If $\{(F_i,\tau_i):i\in I\}$ is a chain in $X$, then $F=\cup_{i\in I}F_i$ is a subfield of $E$
that contains $K$. Moreover, if $z\in F$, then $z\in F_i$ for some $i\in I$ and
then one defines $\tau(z)=\tau_i(z)$. It is an exercise to prove that $\tau$ is well-defined.
Since $(F,\tau)\in X$ is an upper bound, Zorn's lemma implies that there exists
a maximal element
$(E_1,\theta)\in X$. We claim that $E=E_1$. If not, let $z\in E\setminus E_1$.
Since we know the proposition is true for the extension $E_1(z)/E_1$,
let
$\rho\colon E_1(z)\to C$ be a field homomorphism such that $\rho|_{E_1}=\theta$. Then, in particular,
$\rho|_K=\sigma$. This implies that $(E_1(z),\rho)\in X$ and hence
$(E_1,\theta)<(E_1(z),\rho)$, a contradiction to the maximality of $(E_1,\theta)$.
\end{proof}