-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_testing.py
60 lines (43 loc) · 2.06 KB
/
embedding_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
import numpy as np
from data import UserItemRatingDataset, SampleGenerator
from engine import Engine
from transformers import BertConfig
from seq2seq_reviews import Seq2Seq, Seq2SeqEmbeddingGenerator
from BERT_embedding import BertEmbeddingGenerator
def generate_tensors(embedding_generator, review_json):
json_file = pd.read_json(review_json, lines=True)
user_ids = []
[user_ids.append(id) for id in json_file['reviewerID'] if not pd.isna(id)]
items = []
[items.append(item) for item in json_file['asin'] if not pd.isna(item)]
ratings = []
[ratings.append(rating) for rating in json_file['overall'] if not pd.isna(rating)]
user_ids = np.array(user_ids)
items = np.array(items)
ratings = np.array(ratings)
user_ids = pd.DataFrame(user_ids)
items = pd.DataFrame(items)
ratings = pd.DataFrame(ratings)
embeddings = pd.DataFrame(np.array(embedding_generator(embedding_generator.embeddings())))
# ['userId', 'itemId', 'rating', 'review_embedding']
tensors = pd.DataFrame.append(user_ids)
tensors = pd.DataFrame.append(ratings)
tensors = pd.DataFrame.append(user_ids)
tensors = pd.DataFrame.append(embeddings)
return tensors
def test_nlp_algs(review_json):
bert_config = BertConfig()
bert_engine = Engine(bert_config)
bert_embedding_generator = BertEmbeddingGenerator(review_json)
bert_tensors = generate_tensors(bert_embedding_generator, review_json)
seq2seq_config = Seq2Seq.get_config()
seq2seq_engine = Engine(seq2seq_config)
seq2seq_embedding_generator = Seq2SeqEmbeddingGenerator(review_json)
seq2seq_tensors = generate_tensors(seq2seq_embedding_generator, review_json)
bert_rating_dataset = UserItemRatingDataset(bert_tensors)
seq2seq_rating_dataset = UserItemRatingDataset(seq2seq_tensors)
bert_evaluation_tool = SampleGenerator(bert_rating_dataset)
seq2seq_evaluation_tool = SampleGenerator(seq2seq_rating_dataset)
return (bert_evaluation_tool.evaluate_data(), seq2seq_evaluation_tool.evaluate_data())
test_nlp_algs('AMAZON_FASHION_5.json')