-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
240 lines (220 loc) · 9.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import os.path as osp
import time
import warnings
import mmcv
import mmcv_custom # noqa: F401,F403
import mmdet_custom # noqa: F401,F403
import torch
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist
from mmcv.utils import get_git_hash
from mmdet import __version__
from mmdet.apis import init_random_seed, set_random_seed, train_detector
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
from mmdet.utils import collect_env, get_root_logger
from mmcv.cnn.utils import revert_sync_batchnorm
import wandb
from change_key_name import change_key_name_from_timm_to_evo
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--resume-from',
help='the checkpoint file to resume from')
parser.add_argument('--auto-resume',
action='store_true',
help='resume from the latest checkpoint automatically')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument('--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument('--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file (deprecate), '
'change to --cfg-options instead.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument('--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.cfg_options:
raise ValueError(
'--options and --cfg-options cannot be both '
'specified, --options is deprecated in favor of --cfg-options')
if args.options:
warnings.warn('--options is deprecated in favor of --cfg-options')
args.cfg_options = args.options
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.auto_resume = args.auto_resume
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
if len(cfg.gpu_ids) > 1:
warnings.warn(
f'We treat {cfg.gpu_ids} as gpu-ids, and reset to '
f'{cfg.gpu_ids[0:1]} as gpu-ids to avoid potential error in '
'non-distribute training time.')
cfg.gpu_ids = cfg.gpu_ids[0:1]
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# re-set gpu_ids with distributed training mode
_, world_size = get_dist_info()
cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
meta['config'] = cfg.pretty_text
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
# set random seeds
seed = init_random_seed(args.seed)
logger.info(f'Set random seed to {seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(seed, deterministic=args.deterministic)
cfg.seed = seed
meta['seed'] = seed
meta['exp_name'] = osp.basename(args.config)
cfg.log_config.hooks = [
dict(type='WandbLoggerHook',
init_kwargs={'entity': 'team52', 'project': 'mm seg&detect',
'name': cfg.exp_name, 'config': cfg._cfg_dict.to_dict(),
'reinit': False, 'group': cfg.exp_name},
interval=50,
ignore_last=True,
reset_flag=False,
commit=True,
by_epoch=False,
with_step=False,
),
dict(type='TextLoggerHook', by_epoch=False)
]
wandb.init(entity='team52', project='mm seg&detect',
name=cfg.exp_name, config=cfg._cfg_dict.to_dict(), reinit=False)
wandb.save(args.config, policy='now')
model = build_detector(cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
model.init_weights()
# SyncBN is not support for DP
if not distributed:
warnings.warn(
'SyncBN is only supported with DDP. To be compatible with DP, '
'we convert SyncBN to BN. Please use dist_train.sh which can '
'avoid this error.')
model = revert_sync_batchnorm(model)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(mmdet_version=__version__ +
get_git_hash()[:7],
CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
if cfg.get('change_key_name_evo', False):
cfg.change_key_name_func = change_key_name_from_timm_to_evo
if cfg.load_from and hasattr(cfg, 'change_key_name') and cfg.change_key_name:
from mmcv.runner.checkpoint import _load_checkpoint
checkpoint = _load_checkpoint(cfg.load_from)
revised_ckpt_path = cfg.load_from.split('/')
revised_ckpt_path[-1] = 'revised_' + revised_ckpt_path[-1]
revised_ckpt_path = '/'.join(revised_ckpt_path)
cfg.load_from = revised_ckpt_path
if not osp.exists(revised_ckpt_path):
from change_key_name import revise_keys
from collections import OrderedDict
import re
for p, r in revise_keys:
checkpoint['state_dict'] = OrderedDict(
{re.sub(p, r, k): v
for k, v in checkpoint['state_dict'].items()})
torch.save(checkpoint, revised_ckpt_path)
cfg.device = 'cuda'
train_detector(model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
meta=meta)
if __name__ == '__main__':
main()