-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_models.py
321 lines (239 loc) · 10.5 KB
/
cnn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import keras
from keras.models import Model, Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Input
from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D
from keras.layers.merge import add
from keras import regularizers
from keras.applications import ResNet50, VGG16
regular_constant=0
def resnet8(img_width, img_height, img_channels, output_dim):
"""
Define model architecture.
# Arguments
img_width: Target image widht.
img_height: Target image height.
img_channels: Target image channels.
output_dim: Dimension of model output.
# Returns
model: A Model instance.
"""
# Input
img_input = Input(shape=(img_height, img_width, img_channels))
x1 = Conv2D(32, (5, 5), strides=[2,2], padding='same')(img_input)
x1 = MaxPooling2D(pool_size=(3, 3), strides=[2,2])(x1)
# First residual block
x2 = keras.layers.normalization.BatchNormalization()(x1)
x2 = Activation('relu')(x2)
x2 = Conv2D(32, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-5))(x2)
x2 = keras.layers.normalization.BatchNormalization()(x2)
x2 = Activation('relu')(x2)
x2 = Conv2D(32, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-5))(x2)
x1 = Conv2D(32, (1, 1), strides=[2,2], padding='same')(x1)
x3 = add([x1, x2])
# Second residual block
x4 = keras.layers.normalization.BatchNormalization()(x3)
x4 = Activation('relu')(x4)
x4 = Conv2D(64, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x4)
x4 = keras.layers.normalization.BatchNormalization()(x4)
x4 = Activation('relu')(x4)
x4 = Conv2D(64, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x4)
x3 = Conv2D(64, (1, 1), strides=[2,2], padding='same')(x3)
x5 = add([x3, x4])
# Third residual block
x6 = keras.layers.normalization.BatchNormalization()(x5)
x6 = Activation('relu')(x6)
x6 = Conv2D(128, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x6)
x6 = keras.layers.normalization.BatchNormalization()(x6)
x6 = Activation('relu')(x6)
x6 = Conv2D(128, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x6)
x5 = Conv2D(128, (1, 1), strides=[2,2], padding='same')(x5)
x7 = add([x5, x6])
x = Flatten()(x7)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(output_dim)(x)
# Define steering-collision model
model = Model(inputs=[img_input], outputs=[x])
#print(model.summary())
return model
def resnet50(img_width, img_height, img_channels, output_dim):
img_input = Input(shape=(img_height, img_width, img_channels))
base_model = ResNet50(input_tensor=img_input,
weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
# Steering channel
output = Dense(output_dim)(x)
model = Model(inputs=[img_input], outputs=[output])
#print(model.summary())
return model
def resnet50_random_init(img_width, img_height, img_channels, output_dim):
img_input = Input(shape=(img_height, img_width, img_channels))
base_model = ResNet50(input_tensor=img_input,
weights=None, include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
# Steering channel
output = Dense(output_dim)(x)
model = Model(inputs=[img_input], outputs=[output])
#print(model.summary())
return model
def resnet18(img_width, img_height, img_channels, output_dim):
"""
Define model architecture.
# Arguments
img_width: Target image widht.
img_height: Target image height.
img_channels: Target image channels.
output_dim: Dimension of model output.
# Returns
model: A Model instance.
"""
# Input
img_input = Input(shape=(img_height, img_width, img_channels))
x1 = Conv2D(32, (5, 5), strides=[2,2], padding='same')(img_input)
x1 = MaxPooling2D(pool_size=(3, 3), strides=[2,2])(x1)
# First residual block
x2 = keras.layers.normalization.BatchNormalization()(x1)
x2 = Activation('relu')(x2)
x2 = Conv2D(32, (3, 3), strides=[1,1], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x2)
x2 = keras.layers.normalization.BatchNormalization()(x2)
x2 = Activation('relu')(x2)
x2 = Conv2D(32, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x2)
x3 = add([x1, x2])
# Second residual block
x4 = keras.layers.normalization.BatchNormalization()(x3)
x4 = Activation('relu')(x4)
x4 = Conv2D(64, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x4)
x4 = keras.layers.normalization.BatchNormalization()(x4)
x4 = Activation('relu')(x4)
x4 = Conv2D(64, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x4)
x3 = Conv2D(64, (1, 1), strides=[2,2], padding='same')(x3)
x5 = add([x3, x4])
# Third residual block
x6 = keras.layers.normalization.BatchNormalization()(x5)
x6 = Activation('relu')(x6)
x6 = Conv2D(64, (3, 3), strides=[1,1], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x6)
x6 = keras.layers.normalization.BatchNormalization()(x6)
x6 = Activation('relu')(x6)
x6 = Conv2D(64, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x6)
x7 = add([x5, x6])
# Fourth residual block
x8 = keras.layers.normalization.BatchNormalization()(x7)
x8 = Activation('relu')(x8)
x8 = Conv2D(128, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x8)
x8 = keras.layers.normalization.BatchNormalization()(x8)
x8 = Activation('relu')(x8)
x8 = Conv2D(128, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x8)
x7 = Conv2D(128, (1, 1), strides=[2,2], padding='same')(x7)
x9 = add([x7, x8])
# Fifth residual block
x10 = keras.layers.normalization.BatchNormalization()(x9)
x10 = Activation('relu')(x10)
x10 = Conv2D(128, (3, 3), strides=[1,1], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x10)
x10 = keras.layers.normalization.BatchNormalization()(x10)
x10 = Activation('relu')(x10)
x10 = Conv2D(128, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x10)
x11 = add([x9, x10])
# Sixth residual block
x12 = keras.layers.normalization.BatchNormalization()(x11)
x12 = Activation('relu')(x12)
x12 = Conv2D(256, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x12)
x12 = keras.layers.normalization.BatchNormalization()(x12)
x12 = Activation('relu')(x12)
x12 = Conv2D(256, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x12)
x11 = Conv2D(256, (1, 1), strides=[2,2], padding='same')(x11)
x13 = add([x11, x12])
# Seventh residual block
x14 = keras.layers.normalization.BatchNormalization()(x13)
x14 = Activation('relu')(x14)
x14 = Conv2D(256, (3, 3), strides=[1,1], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x14)
x14 = keras.layers.normalization.BatchNormalization()(x14)
x14 = Activation('relu')(x14)
x14 = Conv2D(256, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x14)
x15 = add([x13, x14])
# Eigth residual block
x16 = keras.layers.normalization.BatchNormalization()(x15)
x16 = Activation('relu')(x16)
x16 = Conv2D(512, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x16)
x16 = keras.layers.normalization.BatchNormalization()(x16)
x16 = Activation('relu')(x16)
x16 = Conv2D(512, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(regular_constant))(x16)
x15 = Conv2D(512, (1, 1), strides=[2,2], padding='same')(x15)
x17 = add([x15, x16])
x = GlobalAveragePooling2D()(x17)
x = Dense(256)(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(output_dim)(x)
# Define steering-collision model
model = Model(inputs=[img_input], outputs=[x])
print(model.summary())
return model
def nvidia_net(img_width, img_height, img_channels, output_dim):
img_input = Input(shape=(img_height, img_width, img_channels))
x = Conv2D(24, (5,5), strides=[2,2], padding='same')(img_input)
x = Activation('relu')(x)
x = Conv2D(36, (5,5), strides=[2,2], padding='same')(x)
x = Activation('relu')(x)
x = Conv2D(48, (5,5), strides=[2,2], padding='same')(x)
x = Activation('relu')(x)
x = Conv2D(64, (3,3), strides=[1,1], padding='same')(x)
x = Activation('relu')(x)
x = Conv2D(64, (3,3), strides=[1,1], padding='same')(x)
x = Activation('relu')(x)
x = Flatten()(x)
x = Dense(100)(x)
x = Dense(50)(x)
x = Dense(10)(x)
x = Dense(output_dim)(x)
# Define steering-collision model
model = Model(inputs=[img_input], outputs=[x])
print(model.summary())
return model