-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.js
39 lines (33 loc) · 990 Bytes
/
model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
const tf = require('@tensorflow/tfjs');
const kernel_size = [3, 3]
const pool_size= [2, 2]
const first_filters = 32
const second_filters = 64
const third_filters = 128
const dropout_conv = 0.3
const dropout_dense = 0.3
const model = tf.sequential();
model.add(tf.layers.conv2d({
inputShape: [96, 96, 1],
filters: first_filters,
kernelSize: kernel_size,
activation: 'relu',
}));
model.add(tf.layers.conv2d({
filters: first_filters,
kernelSize: kernel_size,
activation: 'relu',
}));
model.add(tf.layers.maxPooling2d({poolSize: pool_size}));
model.add(tf.layers.dropout({rate: dropout_conv}));
model.add(tf.layers.flatten());
model.add(tf.layers.dense({units: 256, activation: 'relu'}));
model.add(tf.layers.dropout({rate: dropout_dense}));
model.add(tf.layers.dense({units: 5, activation: 'softmax'}));
const optimizer = tf.train.adam(0.0001);
model.compile({
optimizer: optimizer,
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});
module.exports = model;