This repository has been archived by the owner on Jul 18, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpolyFit.py
85 lines (71 loc) · 1.79 KB
/
polyFit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#Code written by Zachary Montgomery.
#Altered by Cory Goates to handle "NaN" values.
#Altered by Cory Goates to allow the user to specify if some power coefficients
#should be set to zero.
import numpy as np
def poly_fit(n,xx,yy,forcezero=None):
good = np.where(~(np.isnan(xx)) & ~(np.isnan(yy)))
x = np.copy(xx[good])
y = np.copy(yy[good])
if forcezero is None:
# initialize variables
A = np.zeros((n,n))
b = np.zeros(n)
powers = range(n)
else:
size = n - len(forcezero)
A = np.zeros((size,size))
b = np.zeros(size)
powers = np.delete(range(n), forcezero)
for i,e in enumerate(powers):
for j,f in enumerate(powers):
A[i,j] = sum( x ** float(e + f) )
b[i] = sum( y * x ** float(e) )
a = np.linalg.solve(A,b)
if forcezero is not None:
for zero in forcezero:
a = np.insert(a,zero,0.)
r = r2(a,x,y)
return a, r
def poly_func(a,x):
f = 0.
n = len(a)
for i in range(n):
f += a[i] * x ** float(i)
return f
def r2(aa,xx,yy):
a = np.copy(aa)
x = np.copy(xx)
y = np.copy(yy)
n = len(y)
y_ = sum(y) / float(n)
SSt = sum((y-y_)**2.)
f = np.zeros(n)
for i in range(n):
f[i] = poly_func(a,x[i])
SSr = sum((y-f)**2.)
return 1. - SSr / SSt
def force_good_poly_fit(n,xx,yy,tol,sym=False):
x = np.copy(xx)
y = np.copy(yy)
a, r = poly_fit(n,x,y,sym=sym)
x_bad = []
y_bad = []
print('R2 is {:7.5f}'.format(r))
while r < tol:
e_loc = 0
l = y.size
e_max = 0.
for i in range(l):
e = abs(poly_func(n,a,x[i]) - y[i])
if e > e_max:
e_max = e
e_loc = i
x_bad.append(x[e_loc])
y_bad.append(y[e_loc])
x = np.delete(x,e_loc)
y = np.delete(y,e_loc)
a, r = poly_fit(n,x,y)
print('R2 is {:7.5f}'.format(r))
mx = max(y)
return a, x, y, x_bad, y_bad, r, mx