forked from aimacode/aima-julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsp.jl
891 lines (787 loc) · 32.7 KB
/
csp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
import Base: get, getindex, getkey,
deepcopy, copy, haskey,
in, display;
export ConstantFunctionDict, CSPDict, CSP, NQueensCSP, SudokuCSP, ZebraCSP,
get, getkey, getindex, deepcopy, copy, haskey, in,
assign, unassign, nconflicts, display, infer_assignment,
MapColoringCSP, backtracking_search, parse_neighbors,
AC3, first_unassigned_variable, minimum_remaining_values,
num_legal_values, unordered_domain_values, least_constraining_values,
no_inference, forward_checking, maintain_arc_consistency,
min_conflicts, tree_csp_solver, topological_sort,
support_pruning, solve_zebra;
#Constraint Satisfaction Problems (CSP)
struct ConstantFunctionDict{V}
value::V
function ConstantFunctionDict{V}(val::V) where V
return new(val);
end
end
ConstantFunctionDict(val) = ConstantFunctionDict{typeof(val)}(val);
copy(cfd::ConstantFunctionDict) = ConstantFunctionDict{typeof(cfd.value)}(cfd.value);
deepcopy(cfd::ConstantFunctionDict) = ConstantFunctionDict{typeof(cfd.value)}(deepcopy(cfd.value));
mutable struct CSPDict
dict::Union{Nothing, Dict, ConstantFunctionDict}
function CSPDict(dictionary::Union{Nothing, Dict, ConstantFunctionDict})
return new(dictionary);
end
end
function getindex(dict::CSPDict, key)
if (typeof(dict.dict) <: ConstantFunctionDict)
return dict.dict.value;
else
return getindex(dict.dict, key);
end
end
function getkey(dict::CSPDict, key, default)
if (typeof(dict.dict) <: ConstantFunctionDict)
return dict.dict.value;
else
return getkey(dict.dict, key, default);
end
end
function get(dict::CSPDict, key, default)
if (typeof(dict.dict) <: ConstantFunctionDict)
return dict.dict.value;
else
return get(dict.dict, key, default);
end
end
function haskey(dict::CSPDict, key)
if (typeof(dict.dict) <: ConstantFunctionDict)
return true;
else
return haskey(dict.dict, key);
end
end
function in(pair::Pair, dict::CSPDict)
if (typeof(dict.dict) <: ConstantFunctionDict)
if (getindex(pair, 2) == dict.dict.value)
return true;
else
return false;
end
else
#Call in() function from dict.jl(0.5)/associative.jl(0.6~nightly).
return in(pair, dict.dict);
end
end
abstract type AbstractCSP <: AbstractProblem end;
#=
CSP is a Constraint Satisfaction Problem implementation of AbstractProblem and AbstractCSP.
This problem contains an unused initial state field to accommodate the requirements
of some search algorithms.
=#
mutable struct CSP <: AbstractCSP
vars::AbstractVector
domains::CSPDict
neighbors::CSPDict
constraints::Function
initial::Tuple
current_domains::Union{Nothing, Dict}
nassigns::Int64
function CSP(vars::AbstractVector, domains::CSPDict, neighbors::CSPDict, constraints::Function;
initial::Tuple=(), current_domains::Union{Nothing, Dict}=nothing, nassigns::Int64=0)
return new(vars, domains, neighbors, constraints, initial, current_domains, nassigns)
end
end
"""
assign(problem, key, val, assignment)
Overwrite (if an value exists already) assignment[key] with 'val'.
"""
function assign(problem::T, key, val, assignment::Dict) where {T <: AbstractCSP}
assignment[key] = val;
problem.nassigns = problem.nassigns + 1;
nothing;
end
"""
unassign(problem, key, val, assignment)
Delete the existing (key, val) pair from 'assignment'.
"""
function unassign(problem::T, key, assignment::Dict) where {T <: AbstractCSP}
if (haskey(assignment, key))
delete!(assignment, key);
end
nothing;
end
function nconflicts(problem::T, key, val, assignment::Dict) where {T <: AbstractCSP}
return count(
(function(second_key)
return (haskey(assignment, second_key) &&
!(problem.constraints(key, val, second_key, assignment[second_key])));
end),
problem.neighbors[key]);
end
function display(problem::T, assignment::Dict) where {T <: AbstractCSP}
println("CSP: ", problem, " with assignment: ", assignment);
nothing;
end
function actions(problem::T, state::Tuple) where {T <: AbstractCSP}
if (length(state) == length(problem.vars))
return [];
else
let
local assignment = Dict(state);
local var = problem.vars[findfirst((function(e)
return !haskey(assignment, e);
end), problem.vars)];
return collect((var, val) for val in problem.domains[var]
if nconflicts(problem, var, val, assignment) == 0);
end
end
end
function get_result(problem::T, state::Tuple, action::Tuple) where {T <: AbstractCSP}
return (state..., action);
end
function goal_test(problem::T, state::Tuple) where {T <: AbstractCSP}
let
local assignment = Dict(state);
return (length(assignment) == length(problem.vars) &&
all((function(key)
return nconflicts(problem, key, assignment[key], assignment) == 0;
end)
,
problem.vars));
end
end
function goal_test(problem::T, state::Dict) where {T <: AbstractCSP}
let
local assignment = deepcopy(state);
return (length(assignment) == length(problem.vars) &&
all((function(key)
return nconflicts(problem, key, assignment[key], assignment) == 0;
end),
problem.vars));
end
end
function path_cost(problem::T, cost::Float64, state1::Tuple, action::Tuple, state2::Tuple) where {T <: AbstractCSP}
return cost + 1;
end
function support_pruning(problem::T) where {T <: AbstractCSP}
if (problem.current_domains === nothing)
problem.current_domains = Dict(collect(Pair(key, collect(problem.domains[key])) for key in problem.vars));
end
nothing;
end
function suppose(problem::T, key, val) where {T <: AbstractCSP}
support_pruning(problem);
local removals::AbstractVector = collect(Pair(key, a) for a in problem.current_domains[key]
if (a != val));
problem.current_domains[key] = [val];
return removals;
end
function prune(problem::T, key, value, removals) where {T <: AbstractCSP}
local not_removed::Bool = true;
for (i, element) in enumerate(problem.current_domains[key])
if (element == value)
deleteat!(problem.current_domains[key], i);
not_removed = false;
break;
end
end
if (not_removed)
error("Could not find ", value, " in ", problem.current_domains[key], " for key '", key, "' to be removed!");
end
if (!(typeof(removals) <: Nothing))
push!(removals, Pair(key, value));
end
nothing;
end
function choices(problem::T, key) where {T <: AbstractCSP}
if (!(problem.current_domains === nothing))
return problem.current_domains[key];
else
return problem.domains[key];
end
end
function infer_assignment(problem::T) where {T <: AbstractCSP}
support_pruning(problem);
return Dict(collect(Pair(key, problem.current_domains[key][1])
for key in problem.vars
if (1 == length(problem.current_domains[key]))));
end
function restore(problem::T, removals::AbstractVector) where {T <: AbstractCSP}
for (key, val) in removals
push!(problem.current_domains[key], val);
end
nothing;
end
function conflicted_variables(problem::T, current_assignment::Dict) where {T <: AbstractCSP}
return collect(var for var in problem.vars
if (nconflicts(problem, var, current_assignment[var], current_assignment) > 0));
end
"""
AC3(problem)
Solve the given problem by applying the arc-consitency algorithm AC-3 (Fig 6.3) to the
given contraint satisfaction problem. Return a boolean indicating whether every arc in
the problem is arc-consistent.
"""
function AC3(problem::T; queue::Union{Nothing, AbstractVector}=nothing, removals::Union{Nothing, AbstractVector}=nothing) where {T <: AbstractCSP}
if (typeof(queue) <: Nothing)
queue = collect((X_i, X_k) for X_i in problem.vars for X_k in problem.neighbors[X_i]);
end
support_pruning(problem);
while (length(queue) != 0)
local X = popfirst!(queue); #Remove the first item from queue
local X_i = getindex(X, 1);
local X_j = getindex(X, 2);
if (revise(problem, X_i, X_j, removals))
if (!haskey(problem.current_domains, X_i))
return false;
end
for X_k in problem.neighbors[X_i]
if (X_k != X_i)
push!(queue, (X_k, X_i));
end
end
end
end
return true;
end
function revise(problem::T, X_i, X_j, removals::Union{Nothing, AbstractVector}) where {T <: AbstractCSP}
local revised::Bool = false;
for x in deepcopy(problem.current_domains[X_i])
if (all((function(y)
return !problem.constraints(X_i, x, X_j, y);
end),
problem.current_domains[X_j]))
prune(problem, X_i, x, removals);
revised = true;
end
end
return revised;
end
function first_unassigned_variable(problem::T, assignment::Dict) where {T <: AbstractCSP}
return getindex(problem.vars, findfirst((function(var)
return !haskey(assignment, var);
end),
problem.vars));
end
function minimum_remaining_values(problem::T, assignment::Dict) where {T <: AbstractCSP}
return argmin_random_tie(collect(v for v in problem.vars if !haskey(assignment, v)),
(function(var)
return num_legal_values(problem, var, assignment);
end));
end
function num_legal_values(problem::T, var, assignment::Dict) where {T <: AbstractCSP}
if (!(problem.current_domains === nothing))
return length(problem.current_domains[var]);
else
return count((function(val)
return (nconflicts(problem, var, val, assignment) == 0);
end),
problem.domains[var]);
end
end
function unordered_domain_values(problem::T, var, assignment::Dict) where {T <: AbstractCSP}
return choices(problem, var);
end
function least_constraining_values(problem::T, var, assignment::Dict) where {T <: AbstractCSP}
return sort!(deepcopy(choices(problem, var)),
lt=(function(val)
return nconflicts(problem, var, val, assignment);
end));
end
function no_inference(problem::T, var, value, assignment::Dict, removals::Union{Nothing, AbstractVector}) where {T <: AbstractCSP}
return true;
end
function forward_checking(problem::T, var, value, assignment::Dict, removals::Union{Nothing, AbstractVector}) where {T <: AbstractCSP}
for B in problem.neighbors[var]
if (!haskey(assignment, B))
for b in copy(problem.current_domains[B])
if (!problem.constraints(var, value, B, b))
prune(problem, B, b, removals);
end
end
if (length(problem.current_domains[B]) == 0)
return false;
end
end
end
return true;
end
function maintain_arc_consistency(problem::T, var, value, assignment::Dict, removals::Union{Nothing, AbstractVector}) where {T <: AbstractCSP}
return AC3(problem, queue=collect((X, var) for X in problem.neighbors[var]), removals=removals);
end
function backtrack(problem::T, assignment::Dict;
select_unassigned_variable::Function=first_unassigned_variable,
order_domain_values::Function=unordered_domain_values,
inference::Function=no_inference) where {T <: AbstractCSP}
if (length(assignment) == length(problem.vars))
return assignment;
end
local var = select_unassigned_variable(problem, assignment);
for value in order_domain_values(problem, var, assignment)
if (nconflicts(problem, var, value, assignment) == 0)
assign(problem, var, value, assignment);
removals = suppose(problem, var, value);
if (inference(problem, var, value, assignment, removals))
result = backtrack(problem, assignment,
select_unassigned_variable=select_unassigned_variable,
order_domain_values=order_domain_values,
inference=inference);
if (!(typeof(result) <: Nothing))
return result;
end
end
restore(problem, removals);
end
end
unassign(problem, var, assignment);
return nothing;
end
"""
backtracking_search(problem)
Search the given problem by using the backtracking search algorithm (Fig 6.5) and return the solution
if any are found.
"""
function backtracking_search(problem::T;
select_unassigned_variable::Function=first_unassigned_variable,
order_domain_values::Function=unordered_domain_values,
inference::Function=no_inference) where {T <: AbstractCSP}
local result = backtrack(problem, Dict(),
select_unassigned_variable=select_unassigned_variable,
order_domain_values=order_domain_values,
inference=inference);
if (!(typeof(result) <: Nothing || goal_test(problem, result)))
error("BacktrackingSearchError: Unexpected result!")
end
return result;
end
function parse_neighbors(neighbors::String; vars::AbstractVector=[])
local new_dict = Dict();
for var in vars
new_dict[var] = [];
end
local specs::AbstractVector = collect(map(String, split(spec, [':'])) for spec in split(neighbors, [';']));
for (A, A_n) in specs
A = String(strip(A));
if (!haskey(new_dict, A))
new_dict[A] = [];
end
for B in map(String, split(A_n))
push!(new_dict[A], B);
if (!haskey(new_dict, B))
new_dict[B] = [];
end
push!(new_dict[B], A);
end
end
return new_dict;
end
function different_values_constraint(A::T1, a::T2, B::T1, b::T2) where {T1, T2}
return (a != b);
end
function min_conflicts_value(problem::T, var::String, current_assignment::Dict) where {T <: AbstractCSP}
return argmin_random_tie(problem.domains[var],
(function(val)
return nconflicts(problem, var, val, current_assignment);
end));
end
function min_conflicts_value(problem::T, var::Int64, current_assignment::Dict) where {T <: AbstractCSP}
return argmin_random_tie(problem.domains[var],
(function(val)
return nconflicts(problem, var, val, current_assignment);
end));
end
"""
min_conflicts(problem)
Search the given problem by using the min-conflicts algorithm (Fig. 6.8) and return the solution
if any are found.
"""
function min_conflicts(problem::T; max_steps::Int64=100000) where {T <: AbstractCSP}
local current::Dict = Dict();
for var in problem.vars
val = min_conflicts_value(problem, var, current);
assign(problem, var, val, current);
end
for i in 1:max_steps
local conflicted::AbstractVector = conflicted_variables(problem, current);
if (length(conflicted) == 0)
return current;
end
local var = rand(RandomDeviceInstance, conflicted);
local val = min_conflicts_value(problem, var, current);
assign(problem, var, val, current);
end
return nothing;
end
"""
tree_csp_solver(problem)
Attempt to solve the given problem using the Tree CSP Solver algorithm (Fig. 6.11) and return
the solution if any are found.
"""
function tree_csp_solver(problem::T) where {T <: AbstractCSP}
local num_of_vars = length(problem.vars);
local assignment = Dict();
local root = problem.vars[1];
X::AbstractVector, parent_dict::Dict = topological_sort(problem, root);
for X_j in reverse(X)
if (!make_arc_consistent(problem, parent_dict, X_j))
return nothing;
end
end
for X_i in X
if (length(problem.current_domains[X_i]) == 0)
return nothing;
end
assignment[X_i] = problem.current_domains[X_i][1];
end
return assignment;
end
"""
topological_sort(problem, root)
Return a topological sorted AbstractVector and a dictionary of vertices and their parents as keys and values.
The topological depth first search sort first visits the 'root' vertex, traversing the graph by recursively
calling topological_sort_postorder_dfs on vertices returned by problem.neighbors[vertex].
The dictionary returned does not have keys (vertices) that do not have a parent vertex.
"""
function topological_sort(problem::T, root::String) where {T <: AbstractCSP}
local sorted_nodes = [];
local parents = Dict();
local visited = Dict();
for v in problem.vars
visited[v] = false;
end
local neighbors = problem.neighbors;
topological_sort_postorder_dfs(root, visited, neighbors, parents, sorted_nodes, nothing);
return sorted_nodes, parents;
end
function topological_sort_postorder_dfs(vertex::String,
visited::Dict,
neighbors::CSPDict,
parents::Dict,
sorted_vertices::AbstractVector,
parent::Union{Nothing, String})
visited[vertex] = true;
for w in neighbors[vertex]
if (!visited[w])
topological_sort_postorder_dfs(w, visited, neighbors, parents, sorted_vertices, vertex);
end
end
insert!(sorted_vertices, 1, vertex);
if (!(typeof(parent) <: Nothing))
parents[vertex] = parent;
end
nothing;
end
function make_arc_consistent(problem::T, parent::Dict, X_j) where {T <: AbstractCSP}
println("make_arc_consistent() is not implemented yet for ", typeof(problem), "!");
nothing;
end
function MapColoringCSP(colors::AbstractVector, neighbors::String)
local parsed_neighbors = parse_neighbors(neighbors);
return CSP(collect(keys(parsed_neighbors)), CSPDict(ConstantFunctionDict(colors)), CSPDict(parsed_neighbors), different_values_constraint);
end
function MapColoringCSP(colors::AbstractVector, neighbors::Dict)
return CSP(collect(keys(neighbors)), CSPDict(ConstantFunctionDict(colors)), CSPDict(neighbors), different_values_constraint);
end
australia_csp = MapColoringCSP(["R", "G", "B"], "SA: WA NT Q NSW V; NT: WA Q; NSW: Q V; T: ");
usa_csp = MapColoringCSP(["R", "G", "B", "Y"],
"WA: OR ID; OR: ID NV CA; CA: NV AZ; NV: ID UT AZ; ID: MT WY UT;
UT: WY CO AZ; MT: ND SD WY; WY: SD NE CO; CO: NE KA OK NM; NM: OK TX;
ND: MN SD; SD: MN IA NE; NE: IA MO KA; KA: MO OK; OK: MO AR TX;
TX: AR LA; MN: WI IA; IA: WI IL MO; MO: IL KY TN AR; AR: MS TN LA;
LA: MS; WI: MI IL; IL: IN KY; IN: OH KY; MS: TN AL; AL: TN GA FL;
MI: OH IN; OH: PA WV KY; KY: WV VA TN; TN: VA NC GA; GA: NC SC FL;
PA: NY NJ DE MD WV; WV: MD VA; VA: MD DC NC; NC: SC; NY: VT MA CT NJ;
NJ: DE; DE: MD; MD: DC; VT: NH MA; MA: NH RI CT; CT: RI; ME: NH;
HI: ; AK: ");
france_csp = MapColoringCSP(["R", "G", "B", "Y"],
"AL: LO FC; AQ: MP LI PC; AU: LI CE BO RA LR MP; BO: CE IF CA FC RA
AU; BR: NB PL; CA: IF PI LO FC BO; CE: PL NB NH IF BO AU LI PC; FC: BO
CA LO AL RA; IF: NH PI CA BO CE; LI: PC CE AU MP AQ; LO: CA AL FC; LR:
MP AU RA PA; MP: AQ LI AU LR; NB: NH CE PL BR; NH: PI IF CE NB; NO:
PI; PA: LR RA; PC: PL CE LI AQ; PI: NH NO CA IF; PL: BR NB CE PC; RA:
AU BO FC PA LR");
function queen_constraint(A, a, B, b)
return ((A == B) || ((a != b) && (A + a != B + b) && (A - a != B - b)));
end
#=
NQueensCSP is a N-Queens Constraint Satisfaction Problem implementation of AbstractProblem and AbstractCSP.
=#
mutable struct NQueensCSP <: AbstractCSP
vars::AbstractVector
domains::CSPDict
neighbors::CSPDict
constraints::Function
initial::Tuple
current_domains::Union{Nothing, Dict}
nassigns::Int64
rows::AbstractVector
backslash_diagonals::AbstractVector
slash_diagonals::AbstractVector
function NQueensCSP(n::Int64; initial::Tuple=(), current_domains::Union{Nothing, Dict}=nothing, nassigns::Int64=0)
return new(collect(1:n),
CSPDict(ConstantFunctionDict(collect(1:n))),
CSPDict(ConstantFunctionDict(collect(1:n))),
queen_constraint,
initial,
current_domains,
nassigns,
fill(0, n),
fill(0, ((2 * n) - 1)),
fill(0, ((2 * n) - 1)),);
end
end
function nconflicts(problem::NQueensCSP, key::Int64, val::Int64, assignment::Dict)
local num_of_vars::Int64 = length(problem.vars);
local c::Int64 = problem.rows[val] +
problem.backslash_diagonals[key + val - 1] +
problem.slash_diagonals[key - val + num_of_vars];
if (get(assignment, key, nothing) == val)
c = c - 3;
end
return c;
end
function assign(problem::NQueensCSP, key::Int64, val::Int64, assignment::Dict)
local old_val = get(assignment, key, nothing);
if (old_val != val)
if (!(typeof(old_val) <: Nothing))
record_conflict(problem, assignment, key, old_val, -1);
end
record_conflict(problem, assignment, key, val, 1);
assignment[key] = val;
problem.nassigns = problem.nassigns + 1;
end
nothing;
end
function unassign(problem::NQueensCSP, key::Int64, assignment::Dict)
if (haskey(assignment, key))
record_conflict(problem, assignment, key, assignment[key], -1);
delete!(assignment, key);
end
nothing;
end
function record_conflict(problem::NQueensCSP, assignment::Dict, key::Int64, val::Int64, delta::Int64)
local num_of_vars::Int64 = length(problem.vars);
problem.rows[val] = problem.rows[val] + delta;
problem.backslash_diagonals[key + val - 1] = problem.backslash_diagonals[key + val - 1] + delta;
problem.slash_diagonals[key - val + num_of_vars] = problem.slash_diagonals[key - val + num_of_vars] + delta;
end
function display(problem::NQueensCSP, assignment::Dict)
local num_of_vars::Int64 = length(problem.vars);
for val in 1:num_of_vars
for key in 1:num_of_vars
local piece::String;
if (get(assignment, key, "") == val)
piece = "Q";
elseif ((key + val - 1) % 2 == 0)
piece = ".";
else
piece = "-";
end
print(piece);
end
print(" ");
for key in 1:num_of_vars
local piece::String;
if (get(assignment, key, "") == val)
piece = "*";
else
piece = " ";
end
print(nconflicts(problem, key, val, assignment), piece);
end
println();
end
nothing;
end
easy_sudoku_grid = "..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3..";
harder_sudoku_grid = "4173698.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......";
struct SudokuInitialState
index_grid::AbstractVector
boxes::AbstractVector
rows::AbstractVector
cols::AbstractVector
function SudokuInitialState()
local index_iter = Base.Iterators.countfrom();
local index_position::AbstractVector = [0];
local index_grid = collect(collect(collect(collect((function(it, ip)
ip[1]=iterate(it, ip[1])[2];
return ip[1];
end)(index_iter, index_position) for x in 1:3)
for y in 1:3)
for box_x in 1:3)
for box_y in 1:3);
local boxes = reduce(vcat, collect(collect(reduce(vcat, row) for row in box_row) for box_row in index_grid));
local rows = reduce(vcat, collect(collect(reduce(vcat, collect(uneval))
for uneval in zip(box_row...,))
for box_row in index_grid));
local cols = collect(collect(eval_tuple) for eval_tuple in zip(rows...,));
return new(index_grid, boxes, rows, cols);
end
end
sudoku_indices = SudokuInitialState();
#=
SudokuCSP is a Sudoku Constraint Satisfaction Problem implementation of AbstractProblem and AbstractCSP.
=#
mutable struct SudokuCSP <: AbstractCSP
vars::AbstractVector
domains::CSPDict
neighbors::CSPDict
constraints::Function
initial::Tuple
current_domains::Union{Nothing, Dict}
nassigns::Int64
function SudokuCSP(grid::String; initial::Tuple=(), current_domains::Union{Nothing, Dict}=nothing, nassigns::Int64=0)
local neighbors = Dict{Int64, Any}(collect(Pair(cell, Set()) for cell in reduce(vcat, sudoku_indices.rows)));
for unit in map(Set, vcat(sudoku_indices.boxes, sudoku_indices.rows, sudoku_indices.cols))
for cell in unit
neighbors[cell] = union(neighbors[cell], setdiff(unit, Set(cell)));
end
end
local squares = map(String, collect(m.match for m in eachmatch(r"\d|\.", grid)));
if (length(squares) != length(reduce(vcat, sudoku_indices.rows)))
error("SudokuCSPError: Invalid Sudoku grid!")
end
local domains = Dict(collect(Pair(key,
if_((number_str in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]),
[Int64(Vector{UInt8}(number_str)[1]) - 48],
[1, 2, 3, 4, 5, 6, 7, 8, 9]))
for (key, number_str) in zip(reduce(vcat, sudoku_indices.rows), squares)));
#Sort the keys of 'domains' when creating the 'vars' field of the new SudokuCSP problem.
#Otherwise, backtracking search on SudokuCSP will run indefinitely.
return new(sort(collect(keys(domains))), CSPDict(domains), CSPDict(neighbors), different_values_constraint,
initial, current_domains, nassigns);
end
end
function display(problem::SudokuCSP, assignment::Dict)
return join(collect(
join(reduce(
(function(lines1, lines2)
return map(
(function(array_str)
return join(array_str, " | ");
end),
zip(lines1, lines2));
end),
map((function(box)
return collect(join(map(
(function(cell)
return string(get(assignment, cell, "."))
end),
row), " ")
for row in box);
end),
box_row)), "\n")
for box_row in sudoku_indices.index_grid),
"\n------+-------+------\n");
end
struct ZebraInitialState
colors::Array{String, 1}
pets::Array{String, 1}
drinks::Array{String, 1}
countries::Array{String, 1}
smokes::Array{String, 1}
function ZebraInitialState()
local colors = map(String, split("Red Yellow Blue Green Ivory"));
local pets = map(String, split("Dog Fox Snails Horse Zebra"));
local drinks = map(String, split("OJ Tea Coffee Milk Water"));
local countries = map(String, split("Englishman Spaniard Norwegian Ukranian Japanese"));
local smokes = map(String, split("Kools Chesterfields Winston LuckyStrike Parliaments"));
return new(colors, pets, drinks, countries, smokes);
end
end
zebra_constants = ZebraInitialState();
function zebra_constraint(A::String, a, B::String, b; recursed::Bool=false)
local same::Bool = (a == b);
local next_to::Bool = (abs(a - b) == 1);
if (A == "Englishman" && B == "Red")
return same;
elseif (A == "Spaniard" && B == "Dog")
return same;
elseif (A == "Chesterfields" && B == "Fox")
return next_to;
elseif (A == "Norwegian" && B == "Blue")
return next_to;
elseif (A == "Kools" && B == "Yellow")
return same;
elseif (A == "Winston" && B == "Snails")
return same;
elseif (A == "LuckyStrike" && B == "OJ")
return same;
elseif (A == "Ukranian" && B == "Tea")
return same;
elseif (A == "Japanese" && B == "Parliaments")
return same;
elseif (A == "Kools" && B == "Horse")
return next_to;
elseif (A == "Coffee" && B == "Green")
return same;
elseif (A == "Green" && B == "Ivory")
return ((a - 1) == b);
elseif (!recursed)
return zebra_constraint(B, b, A, a, recursed=true);
elseif ((A in zebra_constants.colors && B in zebra_constants.colors) ||
(A in zebra_constants.pets && B in zebra_constants.pets) ||
(A in zebra_constants.drinks && B in zebra_constants.drinks) ||
(A in zebra_constants.countries && B in zebra_constants.countries) ||
(A in zebra_constants.smokes && B in zebra_constants.smokes))
return !same;
else
error("ZebraConstraintError: This constraint could not be evaluated on the given arguments!");
end
end
#=
ZebraCSP is a Zebra Constraint Satisfaction Problem implementation of AbstractProblem and AbstractCSP.
=#
mutable struct ZebraCSP <: AbstractCSP
vars::AbstractVector
domains::CSPDict
neighbors::CSPDict
constraints::Function
initial::Tuple
current_domains::Union{Nothing, Dict}
nassigns::Int64
function ZebraCSP(;initial::Tuple=(), current_domains::Union{Nothing, Dict}=nothing, nassigns::Int64=0)
local vars = vcat(zebra_constants.colors,
zebra_constants.pets,
zebra_constants.drinks,
zebra_constants.countries,
zebra_constants.smokes);
local domains = Dict();
for var in vars
domains[var] = collect(1:5);
end
domains["Norwegian"] = [1];
domains["Milk"] = [3];
neighbors = parse_neighbors("Englishman: Red;
Spaniard: Dog; Kools: Yellow; Chesterfields: Fox;
Norwegian: Blue; Winston: Snails; LuckyStrike: OJ;
Ukranian: Tea; Japanese: Parliaments; Kools: Horse;
Coffee: Green; Green: Ivory", vars=vars);
for category in [zebra_constants.colors,
zebra_constants.pets,
zebra_constants.drinks,
zebra_constants.countries,
zebra_constants.smokes]
for A in category
for B in category
if (A != B)
if (!(B in neighbors[A]))
push!(neighbors[A], B);
end
if (!(A in neighbors[B]))
push!(neighbors[B], A);
end
end
end
end
end
return new(vars, CSPDict(domains), CSPDict(neighbors), zebra_constraint, initial, current_domains, nassigns);
end
end
function solve_zebra(problem::ZebraCSP, algorithm::Function; kwargs...)
local answer = algorithm(problem; kwargs...);
for house in collect(1:5)
print("House ", house);
for (key, val) in collect(answer)
if (val == house)
print(" ", key);
end
end
println();
end
return answer["Zebra"], answer["Water"], problem.nassigns, answer;
end