forked from LinusHenze/WebKit-RegEx-Exploit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathint64.js
executable file
·243 lines (207 loc) · 6.72 KB
/
int64.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//
// Tiny module that provides big (64bit) integers.
//
// Copyright (c) 2016 Samuel Groß
//
// Requires utils.js
//
// Datatype to represent 64-bit integers.
//
// Internally, the integer is stored as a Uint8Array in little endian byte order.
function Int64(v) {
// The underlying byte array.
var bytes = new Uint8Array(8);
this.bytes = bytes;
switch (typeof v) {
case 'number':
v = '0x' + Math.floor(v).toString(16);
case 'string':
if (v.startsWith('0x'))
v = v.substr(2);
if (v.length % 2 == 1)
v = '0' + v;
var bigEndian = unhexlify(v, 8);
bytes.set(Array.from(bigEndian).reverse());
break;
case 'object':
if (v instanceof Int64) {
bytes.set(v.getBytes());
} else {
if (v.length != 8)
throw TypeError("Array must have excactly 8 elements.");
bytes.set(v);
}
break;
case 'undefined':
break;
default:
throw TypeError("Int64 constructor requires an argument.");
}
// Return a double whith the same underlying bit representation.
this.asDouble = function() {
// Check for NaN
if (bytes[7] == 0xff && (bytes[6] == 0xff || bytes[6] == 0xfe))
throw new RangeError("Integer can not be represented by a double");
return Struct.unpack(Struct.float64, bytes);
};
// Return a javascript value with the same underlying bit representation.
// This is only possible for integers in the range [0x0001000000000000, 0xffff000000000000)
// due to double conversion constraints.
this.asJSValue = function() {
if ((bytes[7] == 0 && bytes[6] == 0) || (bytes[7] == 0xff && bytes[6] == 0xff))
throw new RangeError("Integer can not be represented by a JSValue");
// For NaN-boxing, JSC adds 2^48 to a double value's bit pattern.
this.assignSub(this, 0x1000000000000);
var res = Struct.unpack(Struct.float64, bytes);
this.assignAdd(this, 0x1000000000000);
return res;
};
// Return the underlying bytes of this number as array.
this.getBytes = function() {
return Array.from(bytes);
};
// Return the byte at the given index.
this.byteAt = function(i) {
return bytes[i];
};
// Return the value of this number as unsigned hex string.
this.toString = function() {
return '0x' + hexlify(Array.from(bytes).reverse());
};
this.asInt32 = function() {
var value = new Int64(0);
for (var i = 0; i < 8; i++) {
if (i < 4) {
value.bytes[i] = this.bytes[i];
} else {
value.bytes[i] = 0;
}
}
return parseInt('0x' + hexlify(Array.from(value.bytes).reverse()).slice(-8));
};
this.asInt16 = function() {
var value = new Int64(0);
for (var i = 0; i < 8; i++) {
if (i < 2) {
value.bytes[i] = this.bytes[i];
} else {
value.bytes[i] = 0;
}
}
return parseInt('0x' + hexlify(Array.from(value.bytes).reverse()).slice(-8));
};
// Basic arithmetic.
// These functions assign the result of the computation to their 'this' object.
// Decorator for Int64 instance operations. Takes care
// of converting arguments to Int64 instances if required.
function operation(f, nargs) {
return function() {
if (arguments.length != nargs)
throw Error("Not enough arguments for function " + f.name);
for (var i = 0; i < arguments.length; i++)
if (!(arguments[i] instanceof Int64))
arguments[i] = new Int64(arguments[i]);
return f.apply(this, arguments);
};
}
// this = -n (two's complement)
this.assignNeg = operation(function neg(n) {
for (var i = 0; i < 8; i++)
bytes[i] = ~n.byteAt(i);
return this.assignAdd(this, Int64.One);
}, 1);
// this = a + b
this.assignAdd = operation(function add(a, b) {
var carry = 0;
for (var i = 0; i < 8; i++) {
var cur = a.byteAt(i) + b.byteAt(i) + carry;
carry = cur > 0xff | 0;
bytes[i] = cur;
}
return this;
}, 2);
// this = a - b
this.assignSub = operation(function sub(a, b) {
var carry = 0;
for (var i = 0; i < 8; i++) {
var cur = a.byteAt(i) - b.byteAt(i) - carry;
carry = cur < 0 | 0;
bytes[i] = cur;
}
return this;
}, 2);
// this = a ^ b
this.assignXor = operation(function xor(a, b) {
for (var i = 0; i < 8; i++) {
bytes[i] = a.byteAt(i) ^ b.byteAt(i);
}
return this;
}, 2);
// this = a & b
this.assignAnd = operation(function and(a, b) {
for (var i = 0; i < 8; i++) {
bytes[i] = a.byteAt(i) & b.byteAt(i);
}
return this;
}, 2);
// this = a << b
this.assignShiftLeft = operation(function shiftLeft(a, b) {
for (var i = 0; i < 8; i++) {
if (i < b) {
bytes[i] = 0;
} else {
bytes[i] = a.byteAt(Sub(i, b).asInt32());
}
}
return this;
}, 2);
// this = a >> b
this.assignShiftRight = operation(function shiftRight(a, b) {
for (var i = 0; i < 8; i++) {
if (i < (8 - b)) {
bytes[i] = a.byteAt(Add(i, b).asInt32());
} else {
bytes[i] = 0;
}
}
return this;
}, 2);
}
// Constructs a new Int64 instance with the same bit representation as the provided double.
Int64.fromDouble = function(d) {
var bytes = Struct.pack(Struct.float64, d);
return new Int64(bytes);
};
// Convenience functions. These allocate a new Int64 to hold the result.
// Return -n (two's complement)
function Neg(n) {
return (new Int64()).assignNeg(n);
}
// Return a + b
function Add(a, b) {
return (new Int64()).assignAdd(a, b);
}
// Return a - b
function Sub(a, b) {
return (new Int64()).assignSub(a, b);
}
// Return a ^ b
function Xor(a, b) {
return (new Int64()).assignXor(a, b);
}
// Return a & b
function And(a, b) {
return (new Int64()).assignAnd(a, b);
}
// Return a << b
function ShiftLeft(a, b) {
return (new Int64()).assignShiftLeft(a, b);
}
// Return a >> b
function ShiftRight(a, b) {
return (new Int64()).assignShiftRight(a, b);
}
// Some commonly used numbers.
Int64.Zero = new Int64(0);
Int64.One = new Int64(1);
// That's all the arithmetic we need for exploiting WebKit.. :)