forked from JuliaAcademy/DataScience
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject.toml
57 lines (56 loc) · 2.62 KB
/
Project.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[deps]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Clustering = "aaaa29a8-35af-508c-8bc3-b662a17a0fe5"
ColorSchemes = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
Convex = "f65535da-76fb-5f13-bab9-19810c17039a"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
DecisionTree = "7806a523-6efd-50cb-b5f6-3fa6f1930dbb"
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
GLMNet = "8d5ece8b-de18-5317-b113-243142960cc6"
GLMakie = "e9467ef8-e4e7-5192-8a1a-b1aee30e663a"
GLPK = "60bf3e95-4087-53dc-ae20-288a0d20c6a6"
HypothesisTests = "09f84164-cd44-5f33-b23f-e6b0d136a0d5"
IJulia = "7073ff75-c697-5162-941a-fcdaad2a7d2a"
Images = "916415d5-f1e6-5110-898d-aaa5f9f070e0"
JLD = "4138dd39-2aa7-5051-a626-17a0bb65d9c8"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
KernelDensity = "5ab0869b-81aa-558d-bb23-cbf5423bbe9b"
LIBSVM = "b1bec4e5-fd48-53fe-b0cb-9723c09d164b"
LightGraphs = "093fc24a-ae57-5d10-9952-331d41423f4d"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LsqFit = "2fda8390-95c7-5789-9bda-21331edee243"
MAT = "23992714-dd62-5051-b70f-ba57cb901cac"
MLBase = "f0e99cf1-93fa-52ec-9ecc-5026115318e0"
MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458"
Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
MatrixNetworks = "4f449596-a032-5618-b826-5a251cb6dc11"
MultivariateStats = "6f286f6a-111f-5878-ab1e-185364afe411"
NPZ = "15e1cf62-19b3-5cfa-8e77-841668bca605"
NearestNeighbors = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
RCall = "6f49c342-dc21-5d91-9882-a32aef131414"
RData = "df47a6cb-8c03-5eed-afd8-b6050d6c41da"
RDatasets = "ce6b1742-4840-55fa-b093-852dadbb1d8b"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
ScikitLearn = "3646fa90-6ef7-5e7e-9f22-8aca16db6324"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
UMAP = "c4f8c510-2410-5be4-91d7-4fbaeb39457e"
VegaDatasets = "0ae4a718-28b7-58ec-9efb-cded64d6d5b4"
VegaLite = "112f6efa-9a02-5b7d-90c0-432ed331239a"
XLSX = "fdbf4ff8-1666-58a4-91e7-1b58723a45e0"
[compat]
julia = "1.6"