-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_parabart.py
276 lines (225 loc) · 10.9 KB
/
train_parabart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os, argparse, pickle, h5py
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from utils import Timer, make_path, deleaf
from pprint import pprint
from tqdm import tqdm
from transformers import BartTokenizer, BartConfig, BartModel
from parabart import ParaBart
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default="./model/")
parser.add_argument('--cache_dir', type=str, default="./bart-base/")
parser.add_argument('--data_dir', type=str, default="./data/")
parser.add_argument('--max_sent_len', type=int, default=40)
parser.add_argument('--max_synt_len', type=int, default=160)
parser.add_argument('--word_dropout', type=float, default=0.2)
parser.add_argument('--n_epoch', type=int, default=10)
parser.add_argument('--train_batch_size', type=int, default=64)
parser.add_argument('--accumulation_steps', type=int, default=1)
parser.add_argument('--valid_batch_size', type=int, default=16)
parser.add_argument('--lr', type=float, default=2e-5)
parser.add_argument('--fast_lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=1e-2)
parser.add_argument('--log_interval', type=int, default=1000)
parser.add_argument('--temp', type=float, default=0.5)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
pprint(vars(args))
print()
# fix random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
def train(epoch, dataset, model, tokenizer, optimizer, args):
timer = Timer()
n_it = len(train_loader)
optimizer.zero_grad()
for it, idxs in enumerate(train_loader):
total_loss = 0.0
adv_total_loss = 0.0
model.train()
sent1_token_ids = dataset['sent1'][idxs].cuda()
synt1_token_ids = dataset['synt1'][idxs].cuda()
sent2_token_ids = dataset['sent2'][idxs].cuda()
synt2_token_ids = dataset['synt2'][idxs].cuda()
synt1_bow = dataset['synt1bow'][idxs].cuda()
synt2_bow = dataset['synt2bow'][idxs].cuda()
# optimize adv
# sent1 adv
outputs = model.forward_adv(sent1_token_ids)
targs = synt1_bow
loss = adv_criterion(outputs, targs)
loss.backward()
adv_total_loss += loss.item()
# sent2 adv
outputs = model.forward_adv(sent2_token_ids)
targs = synt2_bow
loss = adv_criterion(outputs, targs)
loss.backward()
adv_total_loss += loss.item()
if (it+1) % args.accumulation_steps == 0:
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if epoch > 1:
adv_optimizer.step()
adv_optimizer.zero_grad()
# optimize model
# sent1->sent2 para & sent1 adv
outputs, adv_outputs = model(torch.cat((sent1_token_ids, synt2_token_ids), 1), sent2_token_ids)
targs = sent2_token_ids[:, 1:].contiguous().view(-1)
outputs = outputs.contiguous().view(-1, outputs.size(-1))
adv_targs = synt1_bow
loss = para_criterion(outputs, targs)
if epoch > 1:
loss -= 0.1 * adv_criterion(adv_outputs, adv_targs)
loss.backward()
total_loss += loss.item()
# sent2->sent1 para & sent2 adv
outputs, adv_outputs = model(torch.cat((sent2_token_ids, synt1_token_ids), 1), sent1_token_ids)
targs = sent1_token_ids[:, 1:].contiguous().view(-1)
outputs = outputs.contiguous().view(-1, outputs.size(-1))
adv_targs = synt2_bow
loss = para_criterion(outputs, targs)
if epoch > 1:
loss -= 0.1 * adv_criterion(adv_outputs, adv_targs)
loss.backward()
total_loss += loss.item()
if (it+1) % args.accumulation_steps == 0:
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
optimizer.zero_grad()
if (it+1) % args.log_interval == 0 or it == 0:
para_1_2_loss, para_2_1_loss, adv_1_loss, adv_2_loss = evaluate(model, tokenizer, args)
valid_loss = para_1_2_loss + para_2_1_loss - 0.1 * adv_1_loss - 0.1 * adv_2_loss
print("| ep {:2d}/{} | it {:3d}/{} | {:5.2f} s | adv loss {:.4f} | loss {:.4f} | para 1-2 loss {:.4f} | para 2-1 loss {:.4f} | adv 1 loss {:.4f} | adv 2 loss {:.4f} | valid loss {:.4f} |".format(
epoch, args.n_epoch, it+1, n_it, timer.get_time_from_last(), adv_total_loss, total_loss, para_1_2_loss, para_2_1_loss, adv_1_loss, adv_2_loss, valid_loss))
def evaluate(model, tokenizer, args):
model.eval()
para_1_2_loss = 0.0
para_2_1_loss = 0.0
adv_1_loss = 0.0
adv_2_loss = 0.0
with torch.no_grad():
for idxs in valid_loader:
sent1_token_ids = dataset['sent1'][idxs].cuda()
synt1_token_ids = dataset['synt1'][idxs].cuda()
sent2_token_ids = dataset['sent2'][idxs].cuda()
synt2_token_ids = dataset['synt2'][idxs].cuda()
synt1_bow = dataset['synt1bow'][idxs].cuda()
synt2_bow = dataset['synt2bow'][idxs].cuda()
outputs, adv_outputs = model(torch.cat((sent1_token_ids, synt2_token_ids), 1), sent2_token_ids)
targs = sent2_token_ids[:, 1:].contiguous().view(-1)
outputs = outputs.contiguous().view(-1, outputs.size(-1))
adv_targs = synt1_bow
para_1_2_loss += para_criterion(outputs, targs)
adv_1_loss += adv_criterion(adv_outputs, adv_targs)
outputs, adv_outputs = model(torch.cat((sent2_token_ids, synt1_token_ids), 1), sent1_token_ids)
targs = sent1_token_ids[:, 1:].contiguous().view(-1)
outputs = outputs.contiguous().view(-1, outputs.size(-1))
adv_targs = synt2_bow
para_2_1_loss += para_criterion(outputs, targs)
adv_2_loss += adv_criterion(adv_outputs, adv_targs)
return para_1_2_loss / len(valid_loader), para_2_1_loss / len(valid_loader), adv_1_loss / len(valid_loader), adv_2_loss / len(valid_loader)
def prepare_dataset(para_data, tokenizer, num):
sents1 = list(para_data['train_sents1'][:num])
synts1 = list(para_data['train_synts1'][:num])
sents2 = list(para_data['train_sents2'][:num])
synts2 = list(para_data['train_synts2'][:num])
sent1_token_ids = torch.ones((num, args.max_sent_len+2), dtype=torch.long)
sent2_token_ids = torch.ones((num, args.max_sent_len+2), dtype=torch.long)
synt1_token_ids = torch.ones((num, args.max_synt_len+2), dtype=torch.long)
synt2_token_ids = torch.ones((num, args.max_synt_len+2), dtype=torch.long)
synt1_bow = torch.ones((num, 74))
synt2_bow = torch.ones((num, 74))
bsz = 64
for i in tqdm(range(0, num, bsz)):
sent1_inputs = tokenizer(sents1[i:i+bsz], padding='max_length', truncation=True, max_length=args.max_sent_len+2, return_tensors="pt")
sent2_inputs = tokenizer(sents2[i:i+bsz], padding='max_length', truncation=True, max_length=args.max_sent_len+2, return_tensors="pt")
sent1_token_ids[i:i+bsz] = sent1_inputs['input_ids']
sent2_token_ids[i:i+bsz] = sent2_inputs['input_ids']
for i in tqdm(range(num)):
synt1 = ['<s>'] + deleaf(synts1[i]) + ['</s>']
synt1_token_ids[i, :len(synt1)] = torch.tensor([synt_vocab[tag] for tag in synt1])[:args.max_synt_len+2]
synt2 = ['<s>'] + deleaf(synts2[i]) + ['</s>']
synt2_token_ids[i, :len(synt2)] = torch.tensor([synt_vocab[tag] for tag in synt2])[:args.max_synt_len+2]
for tag in synt1:
if tag != '<s>' and tag != '</s>':
synt1_bow[i][synt_vocab[tag]-3] += 1
for tag in synt2:
if tag != '<s>' and tag != '</s>':
synt2_bow[i][synt_vocab[tag]-3] += 1
synt1_bow /= synt1_bow.sum(1, keepdim=True)
synt2_bow /= synt2_bow.sum(1, keepdim=True)
sum = 0
for i in range(num):
if torch.equal(synt1_bow[i], synt2_bow[i]):
sum += 1
return {'sent1':sent1_token_ids, 'sent2':sent2_token_ids, 'synt1': synt1_token_ids, 'synt2': synt2_token_ids,
'synt1bow': synt1_bow, 'synt2bow': synt2_bow}
print("==== loading data ====")
num = 1000000
para_data = h5py.File(os.path.join(args.data_dir, 'data.h5'), 'r')
train_idxs, valid_idxs = random_split(range(num), [num-5000, 5000], generator=torch.Generator().manual_seed(args.seed))
print(f"number of train examples: {len(train_idxs)}")
print(f"number of valid examples: {len(valid_idxs)}")
train_loader = DataLoader(train_idxs, batch_size=args.train_batch_size, shuffle=True)
valid_loader = DataLoader(valid_idxs, batch_size=args.valid_batch_size, shuffle=False)
print("==== preparing data ====")
make_path(args.cache_dir)
tokenizer = BartTokenizer.from_pretrained('facebook/bart-base', cache_dir=args.cache_dir)
with open('synt_vocab.pkl', 'rb') as f:
synt_vocab = pickle.load(f)
dataset = prepare_dataset(para_data, tokenizer, num)
print("==== loading model ====")
config = BartConfig.from_pretrained('facebook/bart-base', cache_dir=args.cache_dir)
config.word_dropout = args.word_dropout
config.max_sent_len = args.max_sent_len
config.max_synt_len = args.max_synt_len
bart = BartModel.from_pretrained('facebook/bart-base', cache_dir=args.cache_dir)
model = ParaBart(config)
model.load_state_dict(bart.state_dict(), strict=False)
model.zero_grad()
del bart
no_decay_params = []
no_decay_fast_params = []
fast_params = []
all_other_params = []
adv_no_decay_params = []
adv_all_other_params = []
for n, p in model.named_parameters():
if 'adv' in n:
if 'norm' in n or 'bias' in n:
adv_no_decay_params.append(p)
else:
adv_all_other_params.append(p)
elif 'linear' in n or 'synt' in n or 'decoder' in n:
if 'bias' in n:
no_decay_fast_params.append(p)
else:
fast_params.append(p)
elif 'norm' in n or 'bias' in n:
no_decay_params.append(p)
else:
all_other_params.append(p)
optimizer = optim.AdamW([
{'params': fast_params, 'lr': args.fast_lr},
{'params': no_decay_fast_params, 'lr': args.fast_lr, 'weight_decay': 0.0},
{'params': no_decay_params, 'weight_decay': 0.0},
{'params': all_other_params}
], lr=args.lr, weight_decay=args.weight_decay)
adv_optimizer = optim.AdamW([
{'params': adv_no_decay_params, 'weight_decay': 0.0},
{'params': adv_all_other_params}
], lr=args.lr, weight_decay=args.weight_decay)
para_criterion = nn.CrossEntropyLoss(ignore_index=model.config.pad_token_id).cuda()
adv_criterion = nn.BCEWithLogitsLoss().cuda()
model = model.cuda()
make_path(args.model_dir)
print("==== start training ====")
for epoch in range(1, args.n_epoch+1):
train(epoch, dataset, model, tokenizer, optimizer, args)
torch.save(model.state_dict(), os.path.join(args.model_dir, "model_epoch{:02d}.pt".format(epoch)))