-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_trainer.py
45 lines (34 loc) · 1.05 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from os import path
import os
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import dataset
import train
import model
CUDA_VISIBLE_DEVICES=1,2,3
batch = 1
data_path = path.join(os.getcwd(), "data")
ds = dataset.create_dataset(data_path)
padSequence = dataset.PadSequence()
train_loader = DataLoader(
ds.train, batch_size=batch, shuffle=True) #, collate_fn=padSequence)
dev_loader = DataLoader(
ds.dev, batch_size=batch, shuffle=False) #, collate_fn=padSequence)
learning_rate = 0.001
model = model.Basic()
device = torch.device(
'cuda') if torch.cuda.is_available() else torch.device('cpu')
# if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
print (device)
model.to(device)
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate)
trainer = train.Trainer(model=model,
device=device,
optimizer=optimizer,
train_loader=train_loader,
dev_loader=dev_loader)
trainer.train_model()
print ("END")