-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
59 lines (49 loc) · 1.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from random import randint
import torch
from transformers import LlamaConfig
from model import MiniLlama
def load_batch(batch_size, num=None):
select = []
reject = []
for i in range(batch_size):
nums = []
cnt = randint(2, 5)
while cnt == num:
cnt = randint(2, 5)
for _ in range(cnt):
nums.append(randint(-50, 50))
reject.append(f"{sum(nums)}={'+'.join(map(str, nums))}E")
if num:
nums1 = []
for _ in range(num - 1):
nums1.append(randint(-50, 50))
nums1.append(sum(nums) - sum(nums1))
select.append(f"{sum(nums1)}={'+'.join(map(str, nums1))}E")
if num:
return select, reject
else:
return reject
def load_test(batch_size):
data = []
for i in range(batch_size):
data.append(f"{randint(-200, 200)}=")
return data
def load_model(checkpoint=None):
config = LlamaConfig(
hidden_size=64,
intermediate_size=128,
max_position_embeddings=64,
num_attention_heads=8,
num_hidden_layers=4,
num_key_value_heads=4,
vocab_size=15,
)
model = MiniLlama(config)
if checkpoint:
model.load_state_dict(torch.load(checkpoint))
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
return model
if __name__ == "__main__":
print(load_batch(10, 1))
print(load_model())