-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsft.py
79 lines (66 loc) · 2.06 KB
/
sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
from tokenizer import Tokenizer
from utils import load_model, load_batch, load_test
from tqdm import tqdm
from matplotlib import pyplot as plt
@torch.no_grad()
def test(model, tokenizer):
split = {}
error_list = []
for i in range(100):
data = load_test(1)
input_ids, attention_mask, _ = tokenizer.encode(data)
output = model.generate(
input_ids,
max_new_tokens=32,
eos_id=tokenizer.vocab2id["E"],
)
predict = tokenizer.decode(output)[0]
try:
assert predict[-1] == "E" and predict.count("=") == 1
predict = predict[:-1]
p1, p2 = predict.split("=")
v = eval(p2)
error_list.append(abs(int(p1) - v))
if (p2.count("+") + 1) not in split:
split[p2.count("+") + 1] = 0
split[p2.count("+") + 1] = split[p2.count("+") + 1] + 1
except Exception as _:
pass
print(split)
print(sum(error_list) / len(error_list))
print(f"acc: {len(error_list)}")
plt.figure()
plt.bar(list(split.keys()), list(split.values()))
plt.title(
f"average error: {sum(error_list) / len(error_list)}\n following instruct: {len(error_list) / 100:.2f}"
)
plt.savefig("sft-dist.jpg")
def train():
steps = 5000
model = load_model()
optimizer = torch.optim.Adam(model.parameters(), 1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, steps)
loss_fn = torch.nn.CrossEntropyLoss()
tokenizer = Tokenizer()
loss_list = []
pbar = tqdm(range(steps))
for i in pbar:
scheduler.step()
model.train()
data = load_batch(256)
input_ids, attention_mask, labels = tokenizer.encode(data, True)
output = model(input_ids, attention_mask)
loss = loss_fn(output[:, :-1].flatten(0, 1), labels[:, 1:].flatten())
loss_list.append(loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
pbar.set_description(f"loss:{loss.item():.4f}")
torch.save(model.state_dict(), "sft.bin")
plt.figure()
plt.plot(range(len(loss_list)), loss_list)
plt.savefig("sft-loss.jpg")
test(model, tokenizer)
if __name__ == "__main__":
train()