-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMakefile
80 lines (73 loc) · 3.18 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
all: report/_build/html/index.html
# download and extract data
data/raw/wdbc.data : scripts/download_data.py
python scripts/download_data.py \
--url="https://archive.ics.uci.edu/static/public/15/breast+cancer+wisconsin+original.zip" \
--write-to=data/raw
# split data into train and test sets, preprocess data for eda
# and save preprocessor
results/models/cancer_preprocessor.pickle data/processed/cancer_train.csv data/processed/cancer_test.csv data/processed/scaled_cancer_train.csv data/processed/scaled_cancer_train.csv : scripts/split_n_preprocess.py data/raw/wdbc.data
python scripts/split_n_preprocess.py \
--raw-data=data/raw/wdbc.data \
--data-to=data/processed \
--preprocessor-to=results/models \
--seed=522
# perform eda and save plots
results/figures/feature_densities_by_class.png : scripts/eda.py data/processed/scaled_cancer_train.csv
python scripts/eda.py \
--processed-training-data=data/processed/scaled_cancer_train.csv \
--plot-to=results/figures
# train model, create visualize tuning, and save plot and model
results/models/cancer_pipeline.pickle results/figures/cancer_choose_k.png : scripts/fit_breast_cancer_classifier.py \
data/processed/cancer_train.csv \
results/models/cancer_preprocessor.pickle \
data/processed/columns_to_drop.csv
python scripts/fit_breast_cancer_classifier.py \
--training-data=data/processed/cancer_train.csv \
--preprocessor=results/models/cancer_preprocessor.pickle \
--columns-to-drop=data/processed/columns_to_drop.csv \
--pipeline-to=results/models \
--plot-to=results/figures \
--seed=523
# evaluate model on test data and save results
results/tables/test_scores.csv results/tables/confusion_matrix.csv : scripts/evaluate_breast_cancer_predictor.py \
data/processed/cancer_test.csv \
results/models/cancer_pipeline.pickle
python scripts/evaluate_breast_cancer_predictor.py \
--scaled-test-data=data/processed/cancer_test.csv \
--pipeline-from=results/models/cancer_pipeline.pickle \
--results-to=results/tables \
--seed=524
# build HTML report and copy build to docs folder
report/_build/html/index.html : report/breast_cancer_predictor_report.ipynb \
report/references.bib \
report/_toc.yml \
report/_config.yml \
results/models/cancer_pipeline.pickle \
results/figures/feature_densities_by_class.png \
results/figures/feature_densities_by_class.png \
results/tables/test_scores.csv \
results/tables/confusion_matrix.csv
jupyter-book build report
cp -r report/_build/html/* docs
if [ ! -f ".nojekyll" ]; then touch docs/.nojekyll; fi
# clean up analysis
clean :
rm -rf data/raw/*
rm -r results/models/cancer_preprocessor.pickle \
data/processed/cancer_train.csv \
data/processed/cancer_test.csv \
data/processed/scaled_cancer_train.csv \
data/processed/scaled_cancer_test.csv \
rm -f results/models/cancer_preprocessor.pickle \
data/processed/cancer_train.csv \
data/processed/cancer_test.csv \
data/processed/scaled_cancer_train.csv \
data/processed/scaled_cancer_train.csv
rm -f results/figures/feature_densities_by_class.png
rm -f results/models/cancer_pipeline.pickle \
results/figures/cancer_choose_k.png
rm -f results/tables/test_scores.csv \
results/tables/confusion_matrix.csv
rm -rf report/_build \
docs/*