-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharkit.txt
executable file
·1348 lines (1343 loc) · 172 KB
/
arkit.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2024-08-25 04:43:37,932 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr/local/cuda-11.7
NVCC: Build cuda_11.7.r11.7/compiler.31294372_0
GCC: gcc (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0
PyTorch: 1.7.1+cu110
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.0
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80
- CuDNN 8.0.5
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.8.2+cu110
OpenCV: 4.10.0
MMCV: 1.2.7
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.0
MMDetection: 2.10.0
MMDetection3D: 0.8.0+a5dfdf3
------------------------------------------------------------
2024-08-25 04:43:37,933 - mmdet - INFO - Distributed training: False
2024-08-25 04:43:38,221 - mmdet - INFO - Config:
model = dict(
type='ImGeoNet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=4),
neck_3d=dict(
type='FastIndoorImVoxelNeck',
in_channels=256,
out_channels=128,
n_blocks=[1, 1, 1]),
bbox_head=dict(
type='SunRgbdImVoxelHeadV2',
n_classes=17,
n_channels=128,
n_reg_outs=7,
n_scales=3,
limit=27,
centerness_topk=18),
occ_head=dict(
type='OccupancyHead',
in_channels=512,
hidden_channels=128,
n_blocks=[1, 1, 1],
loss=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=10.0)),
voxel_size=(0.16, 0.16, 0.16),
n_voxels=(40, 40, 16),
depth_cast_margin=4)
train_cfg = dict()
test_cfg = dict(nms_pre=1000, nms_thr=0.15, use_rotate_nms=True, score_thr=0.0)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
dataset_type = 'ARKitDataset'
data_root = '../data/arkit/'
class_names = ('cabinet', 'refrigerator', 'shelf', 'stove', 'bed', 'sink',
'washer', 'toilet', 'bathtub', 'oven', 'dishwasher',
'fireplace', 'stool', 'chair', 'table', 'tv_monitor', 'sofa')
train_pipeline = [
dict(type='LoadAnnotations3D'),
dict(
type='MultiViewPipeline',
n_images=20,
transforms=[
dict(type='LoadImageFromFile'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
]),
dict(type='LoadDepthMap', depth_shift=1000.0),
dict(type='RandomShiftOrigin', std=(0.7, 0.7, 0.0)),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'refrigerator', 'shelf', 'stove', 'bed',
'sink', 'washer', 'toilet', 'bathtub', 'oven',
'dishwasher', 'fireplace', 'stool', 'chair', 'table',
'tv_monitor', 'sofa')),
dict(
type='Collect3D',
keys=[
'img', 'depth_maps', 'depth_masks', 'gt_bboxes_3d', 'gt_labels_3d'
])
]
test_pipeline = [
dict(
type='MultiViewPipeline',
n_images=50,
sample_method='linear',
transforms=[
dict(type='LoadImageFromFile'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
]),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'refrigerator', 'shelf', 'stove', 'bed',
'sink', 'washer', 'toilet', 'bathtub', 'oven',
'dishwasher', 'fireplace', 'stool', 'chair', 'table',
'tv_monitor', 'sofa'),
with_label=False),
dict(type='Collect3D', keys=['img'])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=8,
train=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type='ARKitDataset',
data_root='../data/arkit/',
ann_file='../data/arkit/arkit_infos_train.pkl',
pipeline=[
dict(type='LoadAnnotations3D'),
dict(
type='MultiViewPipeline',
n_images=20,
transforms=[
dict(type='LoadImageFromFile'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
]),
dict(type='LoadDepthMap', depth_shift=1000.0),
dict(type='RandomShiftOrigin', std=(0.7, 0.7, 0.0)),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'refrigerator', 'shelf', 'stove',
'bed', 'sink', 'washer', 'toilet', 'bathtub',
'oven', 'dishwasher', 'fireplace', 'stool',
'chair', 'table', 'tv_monitor', 'sofa')),
dict(
type='Collect3D',
keys=[
'img', 'depth_maps', 'depth_masks', 'gt_bboxes_3d',
'gt_labels_3d'
])
],
classes=('cabinet', 'refrigerator', 'shelf', 'stove', 'bed',
'sink', 'washer', 'toilet', 'bathtub', 'oven',
'dishwasher', 'fireplace', 'stool', 'chair', 'table',
'tv_monitor', 'sofa'),
filter_empty_gt=True,
box_type_3d='Depth')),
val=dict(
type='ARKitDataset',
data_root='../data/arkit/',
ann_file='../data/arkit/arkit_infos_val.pkl',
pipeline=[
dict(
type='MultiViewPipeline',
n_images=50,
sample_method='linear',
transforms=[
dict(type='LoadImageFromFile'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
]),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'refrigerator', 'shelf', 'stove',
'bed', 'sink', 'washer', 'toilet', 'bathtub',
'oven', 'dishwasher', 'fireplace', 'stool',
'chair', 'table', 'tv_monitor', 'sofa'),
with_label=False),
dict(type='Collect3D', keys=['img'])
],
classes=('cabinet', 'refrigerator', 'shelf', 'stove', 'bed', 'sink',
'washer', 'toilet', 'bathtub', 'oven', 'dishwasher',
'fireplace', 'stool', 'chair', 'table', 'tv_monitor', 'sofa'),
test_mode=True,
box_type_3d='Depth'),
test=dict(
type='ARKitDataset',
data_root='../data/arkit/',
ann_file='../data/arkit/arkit_infos_val.pkl',
pipeline=[
dict(
type='MultiViewPipeline',
n_images=50,
sample_method='linear',
transforms=[
dict(type='LoadImageFromFile'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
]),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'refrigerator', 'shelf', 'stove',
'bed', 'sink', 'washer', 'toilet', 'bathtub',
'oven', 'dishwasher', 'fireplace', 'stool',
'chair', 'table', 'tv_monitor', 'sofa'),
with_label=False),
dict(type='Collect3D', keys=['img'])
],
classes=('cabinet', 'refrigerator', 'shelf', 'stove', 'bed', 'sink',
'washer', 'toilet', 'bathtub', 'oven', 'dishwasher',
'fireplace', 'stool', 'chair', 'table', 'tv_monitor', 'sofa'),
test_mode=True,
box_type_3d='Depth'))
optimizer = dict(
type='AdamW',
lr=0.0001,
weight_decay=0.0001,
paramwise_cfg=dict(
custom_keys=dict(backbone=dict(lr_mult=0.1, decay_mult=1.0))))
optimizer_config = dict(grad_clip=dict(max_norm=35.0, norm_type=2))
total_epochs = 12
lr_config = dict(policy='step', step=[8, 11])
checkpoint_config = dict(interval=1, max_keep_ckpts=12)
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
evaluation = dict(interval=1)
dist_params = dict(backend='nccl')
find_unused_parameters = True
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
work_dir = 'work_dir/imgeonet_arkit'
gpu_ids = range(0, 1)
2024-08-25 04:43:38,221 - mmdet - INFO - Set random seed to 0, deterministic: False
2024-08-25 04:43:38,622 - mmdet - INFO - load model from: torchvision://resnet50
2024-08-25 04:43:38,622 - mmdet - INFO - Use load_from_torchvision loader
2024-08-25 04:43:39,060 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
2024-08-25 04:43:39,079 - mmdet - INFO - Model:
ImGeoNet(
(backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(neck): FPN(
(lateral_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
)
)
(fpn_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(neck_3d): FastIndoorImVoxelNeck(
(down_layer_0): Sequential(
(0): BasicBlock3dV2(
(conv1): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(out_block_0): Sequential(
(0): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(down_layer_1): Sequential(
(0): BasicBlock3dV2(
(conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
(norm1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(up_block_1): Sequential(
(0): ConvTranspose3d(512, 256, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(4): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(out_block_1): Sequential(
(0): Conv3d(512, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(down_layer_2): Sequential(
(0): BasicBlock3dV2(
(conv1): Conv3d(512, 1024, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
(norm1): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv3d(1024, 1024, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm2): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv3d(512, 1024, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(up_block_2): Sequential(
(0): ConvTranspose3d(1024, 512, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(4): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(out_block_2): Sequential(
(0): Conv3d(1024, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(bbox_head): SunRgbdImVoxelHeadV2(
(loss_centerness): CrossEntropyLoss()
(loss_bbox): IoU3DLoss()
(loss_cls): FocalLoss()
(centerness_conv): Conv3d(128, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(reg_conv): Conv3d(128, 7, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(cls_conv): Conv3d(128, 17, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(scales): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
)
(occ_head): OccupancyHead(
(pre_proj): Sequential(
(0): Conv3d(512, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(1): LeakyReLU(negative_slope=0.01)
)
(net): OccupancyNet(
(down_layer_0): Sequential(
(0): BasicBlock3dV2(
(conv1): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(out_block_0): Sequential(
(0): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(down_layer_1): Sequential(
(0): BasicBlock3dV2(
(conv1): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
(norm1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv3d(128, 256, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(up_block_1): Sequential(
(0): ConvTranspose3d(256, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(4): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(out_block_1): Sequential(
(0): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(down_layer_2): Sequential(
(0): BasicBlock3dV2(
(conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
(norm1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(norm2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(up_block_2): Sequential(
(0): ConvTranspose3d(512, 256, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)
(1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(4): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(out_block_2): Sequential(
(0): Conv3d(512, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(post_proj): Conv3d(128, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
(loss): FocalLoss()
)
)
2024-08-25 04:43:45,277 - mmdet - INFO - Start running, host: ttao@mercury, work_dir: /home/ttao/Repository/imgeonet2/mmdetection3d/work_dir/imgeonet_arkit
2024-08-25 04:43:45,277 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
2024-08-25 04:46:00,383 - mmdet - INFO - Epoch [1][50/1685] lr: 1.000e-04, eta: 15:07:55, time: 2.701, data_time: 0.136, memory: 19396, loss_occ: 0.7530, acc_occ: 0.7815, loss_centerness: 0.6479, loss_bbox: 0.7035, loss_cls: 0.7751, loss: 2.8795, grad_norm: 7.1633
2024-08-25 04:48:10,042 - mmdet - INFO - Epoch [1][100/1685] lr: 1.000e-04, eta: 14:47:37, time: 2.593, data_time: 0.013, memory: 19399, loss_occ: 0.6882, acc_occ: 0.7968, loss_centerness: 0.6397, loss_bbox: 0.6642, loss_cls: 0.6782, loss: 2.6703, grad_norm: 4.9641
2024-08-25 04:50:22,900 - mmdet - INFO - Epoch [1][150/1685] lr: 1.000e-04, eta: 14:46:33, time: 2.657, data_time: 0.013, memory: 19399, loss_occ: 0.6781, acc_occ: 0.7934, loss_centerness: 0.6397, loss_bbox: 0.6559, loss_cls: 0.6401, loss: 2.6137, grad_norm: 4.8845
2024-08-25 04:52:38,035 - mmdet - INFO - Epoch [1][200/1685] lr: 1.000e-04, eta: 14:48:42, time: 2.703, data_time: 0.010, memory: 19399, loss_occ: 0.6737, acc_occ: 0.7967, loss_centerness: 0.6405, loss_bbox: 0.6408, loss_cls: 0.6117, loss: 2.5667, grad_norm: 4.9208
2024-08-25 04:54:53,162 - mmdet - INFO - Epoch [1][250/1685] lr: 1.000e-04, eta: 14:49:05, time: 2.703, data_time: 0.010, memory: 19399, loss_occ: 0.6717, acc_occ: 0.7984, loss_centerness: 0.6351, loss_bbox: 0.6316, loss_cls: 0.5911, loss: 2.5296, grad_norm: 4.3724
2024-08-25 04:57:08,680 - mmdet - INFO - Epoch [1][300/1685] lr: 1.000e-04, eta: 14:49:01, time: 2.710, data_time: 0.010, memory: 19410, loss_occ: 0.6472, acc_occ: 0.8050, loss_centerness: 0.6374, loss_bbox: 0.6222, loss_cls: 0.5376, loss: 2.4445, grad_norm: 4.0634
2024-08-25 04:59:24,177 - mmdet - INFO - Epoch [1][350/1685] lr: 1.000e-04, eta: 14:48:18, time: 2.710, data_time: 0.009, memory: 19410, loss_occ: 0.6530, acc_occ: 0.8051, loss_centerness: 0.6366, loss_bbox: 0.6241, loss_cls: 0.5426, loss: 2.4563, grad_norm: 4.6100
2024-08-25 05:01:39,493 - mmdet - INFO - Epoch [1][400/1685] lr: 1.000e-04, eta: 14:47:04, time: 2.706, data_time: 0.010, memory: 19410, loss_occ: 0.6674, acc_occ: 0.7959, loss_centerness: 0.6349, loss_bbox: 0.6172, loss_cls: 0.5310, loss: 2.4504, grad_norm: 4.0903
2024-08-25 05:04:00,242 - mmdet - INFO - Epoch [1][450/1685] lr: 1.000e-04, eta: 14:49:34, time: 2.815, data_time: 0.010, memory: 19410, loss_occ: 0.6484, acc_occ: 0.8020, loss_centerness: 0.6367, loss_bbox: 0.6199, loss_cls: 0.5880, loss: 2.4930, grad_norm: 4.6299
2024-08-25 05:06:23,133 - mmdet - INFO - Epoch [1][500/1685] lr: 1.000e-04, eta: 14:52:31, time: 2.858, data_time: 0.011, memory: 19410, loss_occ: 0.6365, acc_occ: 0.8041, loss_centerness: 0.6372, loss_bbox: 0.6081, loss_cls: 0.5163, loss: 2.3981, grad_norm: 4.3552
2024-08-25 05:08:49,061 - mmdet - INFO - Epoch [1][550/1685] lr: 1.000e-04, eta: 14:56:18, time: 2.919, data_time: 0.010, memory: 19410, loss_occ: 0.6385, acc_occ: 0.8088, loss_centerness: 0.6307, loss_bbox: 0.6062, loss_cls: 0.4931, loss: 2.3685, grad_norm: 4.4042
2024-08-25 05:11:14,906 - mmdet - INFO - Epoch [1][600/1685] lr: 1.000e-04, eta: 14:59:00, time: 2.917, data_time: 0.010, memory: 19410, loss_occ: 0.6297, acc_occ: 0.8057, loss_centerness: 0.6342, loss_bbox: 0.6068, loss_cls: 0.4947, loss: 2.3653, grad_norm: 4.0112
2024-08-25 05:13:38,232 - mmdet - INFO - Epoch [1][650/1685] lr: 1.000e-04, eta: 14:59:39, time: 2.867, data_time: 0.010, memory: 19412, loss_occ: 0.6311, acc_occ: 0.8086, loss_centerness: 0.6351, loss_bbox: 0.5973, loss_cls: 0.4791, loss: 2.3426, grad_norm: 3.9083
2024-08-25 05:16:01,247 - mmdet - INFO - Epoch [1][700/1685] lr: 1.000e-04, eta: 14:59:44, time: 2.860, data_time: 0.011, memory: 19412, loss_occ: 0.6197, acc_occ: 0.8054, loss_centerness: 0.6316, loss_bbox: 0.5964, loss_cls: 0.4686, loss: 2.3163, grad_norm: 4.1393
2024-08-25 05:18:23,790 - mmdet - INFO - Epoch [1][750/1685] lr: 1.000e-04, eta: 14:59:16, time: 2.851, data_time: 0.011, memory: 19412, loss_occ: 0.6317, acc_occ: 0.8037, loss_centerness: 0.6326, loss_bbox: 0.5978, loss_cls: 0.5048, loss: 2.3669, grad_norm: 4.6149
2024-08-25 05:20:50,908 - mmdet - INFO - Epoch [1][800/1685] lr: 1.000e-04, eta: 15:00:25, time: 2.942, data_time: 0.013, memory: 19412, loss_occ: 0.6313, acc_occ: 0.8116, loss_centerness: 0.6292, loss_bbox: 0.5869, loss_cls: 0.4538, loss: 2.3013, grad_norm: 4.0275
2024-08-25 05:23:18,319 - mmdet - INFO - Epoch [1][850/1685] lr: 1.000e-04, eta: 15:01:15, time: 2.948, data_time: 0.014, memory: 19412, loss_occ: 0.6193, acc_occ: 0.8110, loss_centerness: 0.6280, loss_bbox: 0.5833, loss_cls: 0.4493, loss: 2.2798, grad_norm: 3.9784
2024-08-25 05:25:47,568 - mmdet - INFO - Epoch [1][900/1685] lr: 1.000e-04, eta: 15:02:23, time: 2.985, data_time: 0.014, memory: 19414, loss_occ: 0.6124, acc_occ: 0.8126, loss_centerness: 0.6281, loss_bbox: 0.5822, loss_cls: 0.4605, loss: 2.2832, grad_norm: 4.3195
2024-08-25 05:28:18,585 - mmdet - INFO - Epoch [1][950/1685] lr: 1.000e-04, eta: 15:03:44, time: 3.020, data_time: 0.014, memory: 19414, loss_occ: 0.6076, acc_occ: 0.8155, loss_centerness: 0.6288, loss_bbox: 0.5760, loss_cls: 0.4424, loss: 2.2548, grad_norm: 3.9813
2024-08-25 05:30:48,797 - mmdet - INFO - Epoch [1][1000/1685] lr: 1.000e-04, eta: 15:04:26, time: 3.004, data_time: 0.014, memory: 19414, loss_occ: 0.6200, acc_occ: 0.8182, loss_centerness: 0.6316, loss_bbox: 0.5779, loss_cls: 0.4405, loss: 2.2700, grad_norm: 3.8881
2024-08-25 05:33:19,347 - mmdet - INFO - Epoch [1][1050/1685] lr: 1.000e-04, eta: 15:04:56, time: 3.011, data_time: 0.016, memory: 19414, loss_occ: 0.5942, acc_occ: 0.8155, loss_centerness: 0.6315, loss_bbox: 0.5750, loss_cls: 0.4317, loss: 2.2324, grad_norm: 3.9129
2024-08-25 05:35:49,927 - mmdet - INFO - Epoch [1][1100/1685] lr: 1.000e-04, eta: 15:05:10, time: 3.012, data_time: 0.014, memory: 19414, loss_occ: 0.6179, acc_occ: 0.8145, loss_centerness: 0.6290, loss_bbox: 0.5760, loss_cls: 0.4315, loss: 2.2544, grad_norm: 4.4633
2024-08-25 05:38:16,964 - mmdet - INFO - Epoch [1][1150/1685] lr: 1.000e-04, eta: 15:04:11, time: 2.941, data_time: 0.014, memory: 19414, loss_occ: 0.6089, acc_occ: 0.8205, loss_centerness: 0.6279, loss_bbox: 0.5778, loss_cls: 0.4379, loss: 2.2524, grad_norm: 4.0958
2024-08-25 05:40:44,532 - mmdet - INFO - Epoch [1][1200/1685] lr: 1.000e-04, eta: 15:03:14, time: 2.951, data_time: 0.014, memory: 19414, loss_occ: 0.6237, acc_occ: 0.8206, loss_centerness: 0.6283, loss_bbox: 0.5693, loss_cls: 0.4194, loss: 2.2407, grad_norm: 3.9373
2024-08-25 05:43:15,003 - mmdet - INFO - Epoch [1][1250/1685] lr: 1.000e-04, eta: 15:02:53, time: 3.009, data_time: 0.014, memory: 19414, loss_occ: 0.6039, acc_occ: 0.8246, loss_centerness: 0.6270, loss_bbox: 0.5668, loss_cls: 0.4328, loss: 2.2306, grad_norm: 4.4634
2024-08-25 05:45:43,830 - mmdet - INFO - Epoch [1][1300/1685] lr: 1.000e-04, eta: 15:01:58, time: 2.977, data_time: 0.014, memory: 19414, loss_occ: 0.5973, acc_occ: 0.8245, loss_centerness: 0.6317, loss_bbox: 0.5623, loss_cls: 0.4226, loss: 2.2139, grad_norm: 4.2927
2024-08-25 05:48:09,260 - mmdet - INFO - Epoch [1][1350/1685] lr: 1.000e-04, eta: 15:00:08, time: 2.909, data_time: 0.014, memory: 19414, loss_occ: 0.6181, acc_occ: 0.8210, loss_centerness: 0.6312, loss_bbox: 0.5625, loss_cls: 0.4107, loss: 2.2224, grad_norm: 4.0398
2024-08-25 05:50:33,620 - mmdet - INFO - Epoch [1][1400/1685] lr: 1.000e-04, eta: 14:58:02, time: 2.887, data_time: 0.015, memory: 19414, loss_occ: 0.6022, acc_occ: 0.8289, loss_centerness: 0.6274, loss_bbox: 0.5576, loss_cls: 0.4067, loss: 2.1939, grad_norm: 4.2058
2024-08-25 05:53:05,379 - mmdet - INFO - Epoch [1][1450/1685] lr: 1.000e-04, eta: 14:57:30, time: 3.035, data_time: 0.013, memory: 19414, loss_occ: 0.5976, acc_occ: 0.8232, loss_centerness: 0.6286, loss_bbox: 0.5562, loss_cls: 0.4098, loss: 2.1921, grad_norm: 3.8393
2024-08-25 05:55:31,726 - mmdet - INFO - Epoch [1][1500/1685] lr: 1.000e-04, eta: 14:55:43, time: 2.927, data_time: 0.011, memory: 19414, loss_occ: 0.6092, acc_occ: 0.8226, loss_centerness: 0.6287, loss_bbox: 0.5548, loss_cls: 0.4126, loss: 2.2052, grad_norm: 4.1663
2024-08-25 05:57:58,446 - mmdet - INFO - Epoch [1][1550/1685] lr: 1.000e-04, eta: 14:53:58, time: 2.934, data_time: 0.011, memory: 19414, loss_occ: 0.5949, acc_occ: 0.8251, loss_centerness: 0.6276, loss_bbox: 0.5533, loss_cls: 0.4069, loss: 2.1828, grad_norm: 3.9826
2024-08-25 06:00:26,042 - mmdet - INFO - Epoch [1][1600/1685] lr: 1.000e-04, eta: 14:52:20, time: 2.952, data_time: 0.012, memory: 19414, loss_occ: 0.6056, acc_occ: 0.8284, loss_centerness: 0.6276, loss_bbox: 0.5457, loss_cls: 0.3955, loss: 2.1743, grad_norm: 4.3637
2024-08-25 06:02:52,519 - mmdet - INFO - Epoch [1][1650/1685] lr: 1.000e-04, eta: 14:50:27, time: 2.930, data_time: 0.014, memory: 19414, loss_occ: 0.5962, acc_occ: 0.8171, loss_centerness: 0.6272, loss_bbox: 0.5638, loss_cls: 0.4812, loss: 2.2684, grad_norm: 5.0648
2024-08-25 06:04:33,130 - mmdet - INFO - Saving checkpoint at 1 epochs
2024-08-25 06:06:46,539 - mmdet - INFO -
+--------------+---------+---------+---------+---------+
| classes | AP_0.25 | AR_0.25 | AP_0.50 | AR_0.50 |
+--------------+---------+---------+---------+---------+
| sofa | 0.6568 | 0.8215 | 0.1692 | 0.3491 |
| cabinet | 0.3546 | 0.5831 | 0.0525 | 0.1517 |
| chair | 0.4679 | 0.7388 | 0.1010 | 0.2362 |
| table | 0.3309 | 0.7467 | 0.0388 | 0.1993 |
| toilet | 0.8643 | 0.9174 | 0.5271 | 0.6281 |
| stool | 0.0398 | 0.3763 | 0.0071 | 0.0376 |
| sink | 0.2367 | 0.3217 | 0.0144 | 0.0669 |
| shelf | 0.1658 | 0.4660 | 0.0035 | 0.0631 |
| refrigerator | 0.4170 | 0.9024 | 0.1919 | 0.4512 |
| tv_monitor | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| washer | 0.6672 | 0.8596 | 0.4499 | 0.5877 |
| oven | 0.3184 | 0.5584 | 0.0881 | 0.2273 |
| bathtub | 0.9206 | 0.9592 | 0.4246 | 0.5408 |
| bed | 0.7916 | 0.9337 | 0.4325 | 0.5470 |
| fireplace | 0.3206 | 0.6111 | 0.0226 | 0.1296 |
| dishwasher | 0.0323 | 0.8400 | 0.0097 | 0.4000 |
| stove | 0.0041 | 0.0510 | 0.0000 | 0.0000 |
+--------------+---------+---------+---------+---------+
| Overall | 0.3876 | 0.6287 | 0.1490 | 0.2715 |
+--------------+---------+---------+---------+---------+
2024-08-25 06:06:47,081 - mmdet - INFO - Epoch(val) [1][1685] sofa_AP_0.25: 0.6568, cabinet_AP_0.25: 0.3546, chair_AP_0.25: 0.4679, table_AP_0.25: 0.3309, toilet_AP_0.25: 0.8643, stool_AP_0.25: 0.0398, sink_AP_0.25: 0.2367, shelf_AP_0.25: 0.1658, refrigerator_AP_0.25: 0.4170, tv_monitor_AP_0.25: 0.0000, washer_AP_0.25: 0.6672, oven_AP_0.25: 0.3184, bathtub_AP_0.25: 0.9206, bed_AP_0.25: 0.7916, fireplace_AP_0.25: 0.3206, dishwasher_AP_0.25: 0.0323, stove_AP_0.25: 0.0041, mAP_0.25: 0.3876, sofa_rec_0.25: 0.8215, cabinet_rec_0.25: 0.5831, chair_rec_0.25: 0.7388, table_rec_0.25: 0.7467, toilet_rec_0.25: 0.9174, stool_rec_0.25: 0.3763, sink_rec_0.25: 0.3217, shelf_rec_0.25: 0.4660, refrigerator_rec_0.25: 0.9024, tv_monitor_rec_0.25: 0.0000, washer_rec_0.25: 0.8596, oven_rec_0.25: 0.5584, bathtub_rec_0.25: 0.9592, bed_rec_0.25: 0.9337, fireplace_rec_0.25: 0.6111, dishwasher_rec_0.25: 0.8400, stove_rec_0.25: 0.0510, mAR_0.25: 0.6287, sofa_AP_0.50: 0.1692, cabinet_AP_0.50: 0.0525, chair_AP_0.50: 0.1010, table_AP_0.50: 0.0388, toilet_AP_0.50: 0.5271, stool_AP_0.50: 0.0071, sink_AP_0.50: 0.0144, shelf_AP_0.50: 0.0035, refrigerator_AP_0.50: 0.1919, tv_monitor_AP_0.50: 0.0000, washer_AP_0.50: 0.4499, oven_AP_0.50: 0.0881, bathtub_AP_0.50: 0.4246, bed_AP_0.50: 0.4325, fireplace_AP_0.50: 0.0226, dishwasher_AP_0.50: 0.0097, stove_AP_0.50: 0.0000, mAP_0.50: 0.1490, sofa_rec_0.50: 0.3491, cabinet_rec_0.50: 0.1517, chair_rec_0.50: 0.2362, table_rec_0.50: 0.1993, toilet_rec_0.50: 0.6281, stool_rec_0.50: 0.0376, sink_rec_0.50: 0.0669, shelf_rec_0.50: 0.0631, refrigerator_rec_0.50: 0.4512, tv_monitor_rec_0.50: 0.0000, washer_rec_0.50: 0.5877, oven_rec_0.50: 0.2273, bathtub_rec_0.50: 0.5408, bed_rec_0.50: 0.5470, fireplace_rec_0.50: 0.1296, dishwasher_rec_0.50: 0.4000, stove_rec_0.50: 0.0000, mAR_0.50: 0.2715
2024-08-25 06:09:23,314 - mmdet - INFO - Epoch [2][50/1685] lr: 1.000e-04, eta: 14:30:41, time: 3.124, data_time: 0.136, memory: 19414, loss_occ: 0.6057, acc_occ: 0.8204, loss_centerness: 0.6242, loss_bbox: 0.5524, loss_cls: 0.4331, loss: 2.2153, grad_norm: 4.3275
2024-08-25 06:11:50,115 - mmdet - INFO - Epoch [2][100/1685] lr: 1.000e-04, eta: 14:29:16, time: 2.936, data_time: 0.011, memory: 19414, loss_occ: 0.5867, acc_occ: 0.8319, loss_centerness: 0.6308, loss_bbox: 0.5451, loss_cls: 0.3937, loss: 2.1563, grad_norm: 3.7693
2024-08-25 06:14:18,137 - mmdet - INFO - Epoch [2][150/1685] lr: 1.000e-04, eta: 14:28:01, time: 2.960, data_time: 0.010, memory: 19414, loss_occ: 0.6112, acc_occ: 0.8295, loss_centerness: 0.6287, loss_bbox: 0.5443, loss_cls: 0.3968, loss: 2.1811, grad_norm: 3.8565
2024-08-25 06:16:45,754 - mmdet - INFO - Epoch [2][200/1685] lr: 1.000e-04, eta: 14:26:37, time: 2.952, data_time: 0.011, memory: 19414, loss_occ: 0.5993, acc_occ: 0.8341, loss_centerness: 0.6259, loss_bbox: 0.5411, loss_cls: 0.3863, loss: 2.1526, grad_norm: 3.9392
2024-08-25 06:19:10,514 - mmdet - INFO - Epoch [2][250/1685] lr: 1.000e-04, eta: 14:24:43, time: 2.895, data_time: 0.013, memory: 19414, loss_occ: 0.5868, acc_occ: 0.8419, loss_centerness: 0.6256, loss_bbox: 0.5384, loss_cls: 0.3769, loss: 2.1278, grad_norm: 3.8981
2024-08-25 06:21:35,948 - mmdet - INFO - Epoch [2][300/1685] lr: 1.000e-04, eta: 14:22:54, time: 2.909, data_time: 0.015, memory: 19414, loss_occ: 0.5943, acc_occ: 0.8382, loss_centerness: 0.6245, loss_bbox: 0.5395, loss_cls: 0.3695, loss: 2.1277, grad_norm: 4.0979
2024-08-25 06:24:03,203 - mmdet - INFO - Epoch [2][350/1685] lr: 1.000e-04, eta: 14:21:19, time: 2.945, data_time: 0.015, memory: 19414, loss_occ: 0.5810, acc_occ: 0.8370, loss_centerness: 0.6211, loss_bbox: 0.5425, loss_cls: 0.4049, loss: 2.1496, grad_norm: 4.1070
2024-08-25 06:26:29,571 - mmdet - INFO - Epoch [2][400/1685] lr: 1.000e-04, eta: 14:19:34, time: 2.927, data_time: 0.014, memory: 19414, loss_occ: 0.5793, acc_occ: 0.8407, loss_centerness: 0.6285, loss_bbox: 0.5366, loss_cls: 0.3796, loss: 2.1240, grad_norm: 3.8638
2024-08-25 06:28:54,388 - mmdet - INFO - Epoch [2][450/1685] lr: 1.000e-04, eta: 14:17:34, time: 2.896, data_time: 0.013, memory: 19414, loss_occ: 0.5770, acc_occ: 0.8378, loss_centerness: 0.6227, loss_bbox: 0.5301, loss_cls: 0.3770, loss: 2.1068, grad_norm: 3.9299
2024-08-25 06:31:20,738 - mmdet - INFO - Epoch [2][500/1685] lr: 1.000e-04, eta: 14:15:46, time: 2.927, data_time: 0.012, memory: 19414, loss_occ: 0.5901, acc_occ: 0.8364, loss_centerness: 0.6264, loss_bbox: 0.5348, loss_cls: 0.3726, loss: 2.1240, grad_norm: 3.9235
2024-08-25 06:33:44,454 - mmdet - INFO - Epoch [2][550/1685] lr: 1.000e-04, eta: 14:13:35, time: 2.874, data_time: 0.012, memory: 19414, loss_occ: 0.5848, acc_occ: 0.8362, loss_centerness: 0.6233, loss_bbox: 0.5339, loss_cls: 0.3720, loss: 2.1141, grad_norm: 4.0677
2024-08-25 06:36:03,212 - mmdet - INFO - Epoch [2][600/1685] lr: 1.000e-04, eta: 14:10:44, time: 2.775, data_time: 0.014, memory: 19414, loss_occ: 0.5835, acc_occ: 0.8391, loss_centerness: 0.6226, loss_bbox: 0.5367, loss_cls: 0.3807, loss: 2.1235, grad_norm: 3.8275
2024-08-25 06:38:20,951 - mmdet - INFO - Epoch [2][650/1685] lr: 1.000e-04, eta: 14:07:46, time: 2.755, data_time: 0.010, memory: 19414, loss_occ: 0.5887, acc_occ: 0.8311, loss_centerness: 0.6220, loss_bbox: 0.5331, loss_cls: 0.4456, loss: 2.1894, grad_norm: 5.0562
2024-08-25 06:40:40,237 - mmdet - INFO - Epoch [2][700/1685] lr: 1.000e-04, eta: 14:05:02, time: 2.786, data_time: 0.010, memory: 19414, loss_occ: 0.5986, acc_occ: 0.8325, loss_centerness: 0.6262, loss_bbox: 0.5417, loss_cls: 0.4084, loss: 2.1749, grad_norm: 3.7099
2024-08-25 06:43:01,110 - mmdet - INFO - Epoch [2][750/1685] lr: 1.000e-04, eta: 14:02:31, time: 2.817, data_time: 0.010, memory: 19414, loss_occ: 0.5826, acc_occ: 0.8406, loss_centerness: 0.6266, loss_bbox: 0.5357, loss_cls: 0.3887, loss: 2.1336, grad_norm: 3.7907
2024-08-25 06:45:20,425 - mmdet - INFO - Epoch [2][800/1685] lr: 1.000e-04, eta: 13:59:49, time: 2.786, data_time: 0.012, memory: 19414, loss_occ: 0.5969, acc_occ: 0.8378, loss_centerness: 0.6189, loss_bbox: 0.5315, loss_cls: 0.3712, loss: 2.1185, grad_norm: 3.8306
2024-08-25 06:47:38,483 - mmdet - INFO - Epoch [2][850/1685] lr: 1.000e-04, eta: 13:56:59, time: 2.761, data_time: 0.014, memory: 19414, loss_occ: 0.5871, acc_occ: 0.8383, loss_centerness: 0.6220, loss_bbox: 0.5319, loss_cls: 0.3748, loss: 2.1159, grad_norm: 3.9907
2024-08-25 06:50:00,347 - mmdet - INFO - Epoch [2][900/1685] lr: 1.000e-04, eta: 13:54:36, time: 2.837, data_time: 0.013, memory: 19414, loss_occ: 0.5880, acc_occ: 0.8432, loss_centerness: 0.6256, loss_bbox: 0.5327, loss_cls: 0.3778, loss: 2.1241, grad_norm: 4.2937
2024-08-25 06:52:27,270 - mmdet - INFO - Epoch [2][950/1685] lr: 1.000e-04, eta: 13:52:47, time: 2.938, data_time: 0.015, memory: 19414, loss_occ: 0.5857, acc_occ: 0.8415, loss_centerness: 0.6249, loss_bbox: 0.5249, loss_cls: 0.3674, loss: 2.1030, grad_norm: 3.8771
2024-08-25 06:54:57,635 - mmdet - INFO - Epoch [2][1000/1685] lr: 1.000e-04, eta: 13:51:19, time: 3.007, data_time: 0.015, memory: 19414, loss_occ: 0.5784, acc_occ: 0.8440, loss_centerness: 0.6232, loss_bbox: 0.5240, loss_cls: 0.3596, loss: 2.0852, grad_norm: 3.9778
2024-08-25 06:57:25,461 - mmdet - INFO - Epoch [2][1050/1685] lr: 1.000e-04, eta: 13:49:33, time: 2.957, data_time: 0.013, memory: 19414, loss_occ: 0.5943, acc_occ: 0.8450, loss_centerness: 0.6250, loss_bbox: 0.5199, loss_cls: 0.3622, loss: 2.1014, grad_norm: 3.8302
2024-08-25 06:59:52,441 - mmdet - INFO - Epoch [2][1100/1685] lr: 1.000e-04, eta: 13:47:39, time: 2.940, data_time: 0.011, memory: 19414, loss_occ: 0.5742, acc_occ: 0.8465, loss_centerness: 0.6236, loss_bbox: 0.5218, loss_cls: 0.3578, loss: 2.0774, grad_norm: 3.8936
2024-08-25 07:02:18,744 - mmdet - INFO - Epoch [2][1150/1685] lr: 1.000e-04, eta: 13:45:41, time: 2.926, data_time: 0.011, memory: 19414, loss_occ: 0.5870, acc_occ: 0.8449, loss_centerness: 0.6263, loss_bbox: 0.5238, loss_cls: 0.3580, loss: 2.0951, grad_norm: 3.7640
2024-08-25 07:04:47,600 - mmdet - INFO - Epoch [2][1200/1685] lr: 1.000e-04, eta: 13:43:57, time: 2.977, data_time: 0.011, memory: 19414, loss_occ: 0.5760, acc_occ: 0.8462, loss_centerness: 0.6242, loss_bbox: 0.5196, loss_cls: 0.3556, loss: 2.0755, grad_norm: 3.7800
2024-08-25 07:07:15,564 - mmdet - INFO - Epoch [2][1250/1685] lr: 1.000e-04, eta: 13:42:06, time: 2.959, data_time: 0.010, memory: 19414, loss_occ: 0.5800, acc_occ: 0.8433, loss_centerness: 0.6219, loss_bbox: 0.5218, loss_cls: 0.3732, loss: 2.0969, grad_norm: 4.2597
2024-08-25 07:09:43,564 - mmdet - INFO - Epoch [2][1300/1685] lr: 1.000e-04, eta: 13:40:14, time: 2.960, data_time: 0.010, memory: 19414, loss_occ: 0.5670, acc_occ: 0.8494, loss_centerness: 0.6251, loss_bbox: 0.5232, loss_cls: 0.3622, loss: 2.0776, grad_norm: 4.0014
2024-08-25 07:12:08,520 - mmdet - INFO - Epoch [2][1350/1685] lr: 1.000e-04, eta: 13:38:03, time: 2.899, data_time: 0.011, memory: 19414, loss_occ: 0.5760, acc_occ: 0.8545, loss_centerness: 0.6228, loss_bbox: 0.5156, loss_cls: 0.3549, loss: 2.0694, grad_norm: 4.0796
2024-08-25 07:14:35,793 - mmdet - INFO - Epoch [2][1400/1685] lr: 1.000e-04, eta: 13:36:05, time: 2.945, data_time: 0.010, memory: 19414, loss_occ: 0.5654, acc_occ: 0.8513, loss_centerness: 0.6186, loss_bbox: 0.5114, loss_cls: 0.3450, loss: 2.0405, grad_norm: 3.9051
2024-08-25 07:17:05,640 - mmdet - INFO - Epoch [2][1450/1685] lr: 1.000e-04, eta: 13:34:20, time: 2.997, data_time: 0.011, memory: 19414, loss_occ: 0.5669, acc_occ: 0.8507, loss_centerness: 0.6206, loss_bbox: 0.5174, loss_cls: 0.3792, loss: 2.0841, grad_norm: 4.4625
2024-08-25 07:19:32,042 - mmdet - INFO - Epoch [2][1500/1685] lr: 1.000e-04, eta: 13:32:16, time: 2.928, data_time: 0.011, memory: 19414, loss_occ: 0.5921, acc_occ: 0.8434, loss_centerness: 0.6253, loss_bbox: 0.5191, loss_cls: 0.3875, loss: 2.1240, grad_norm: 3.8082
2024-08-25 07:21:59,047 - mmdet - INFO - Epoch [2][1550/1685] lr: 1.000e-04, eta: 13:30:13, time: 2.940, data_time: 0.014, memory: 19414, loss_occ: 0.5702, acc_occ: 0.8505, loss_centerness: 0.6219, loss_bbox: 0.5139, loss_cls: 0.3544, loss: 2.0604, grad_norm: 3.8447
2024-08-25 07:24:29,421 - mmdet - INFO - Epoch [2][1600/1685] lr: 1.000e-04, eta: 13:28:28, time: 3.007, data_time: 0.015, memory: 19414, loss_occ: 0.5768, acc_occ: 0.8518, loss_centerness: 0.6173, loss_bbox: 0.5152, loss_cls: 0.3793, loss: 2.0886, grad_norm: 4.0789
2024-08-25 07:26:58,901 - mmdet - INFO - Epoch [2][1650/1685] lr: 1.000e-04, eta: 13:26:36, time: 2.990, data_time: 0.014, memory: 19414, loss_occ: 0.5814, acc_occ: 0.8478, loss_centerness: 0.6159, loss_bbox: 0.5062, loss_cls: 0.3634, loss: 2.0670, grad_norm: 3.8955
2024-08-25 07:28:40,338 - mmdet - INFO - Saving checkpoint at 2 epochs
2024-08-25 07:30:53,436 - mmdet - INFO -
+--------------+---------+---------+---------+---------+
| classes | AP_0.25 | AR_0.25 | AP_0.50 | AR_0.50 |
+--------------+---------+---------+---------+---------+
| sofa | 0.7225 | 0.8189 | 0.3626 | 0.4777 |
| chair | 0.5717 | 0.8050 | 0.1645 | 0.3550 |
| table | 0.5446 | 0.8154 | 0.1551 | 0.3203 |
| cabinet | 0.4122 | 0.6089 | 0.0739 | 0.1854 |
| toilet | 0.8955 | 0.9174 | 0.6029 | 0.6942 |
| stool | 0.1348 | 0.4785 | 0.0334 | 0.1344 |
| sink | 0.2521 | 0.3471 | 0.0295 | 0.0987 |
| refrigerator | 0.6451 | 0.9024 | 0.2178 | 0.4146 |
| shelf | 0.3015 | 0.5728 | 0.0078 | 0.0825 |
| tv_monitor | 0.0002 | 0.0142 | 0.0000 | 0.0000 |
| bathtub | 0.9471 | 0.9694 | 0.6711 | 0.7449 |
| oven | 0.4479 | 0.6364 | 0.0911 | 0.2078 |
| bed | 0.8498 | 0.9337 | 0.5466 | 0.6354 |
| dishwasher | 0.0576 | 0.8400 | 0.0070 | 0.2000 |
| washer | 0.6842 | 0.8070 | 0.5446 | 0.6053 |
| stove | 0.0968 | 0.1837 | 0.0000 | 0.0000 |
| fireplace | 0.4308 | 0.6852 | 0.0427 | 0.1667 |
+--------------+---------+---------+---------+---------+
| Overall | 0.4703 | 0.6668 | 0.2089 | 0.3131 |
+--------------+---------+---------+---------+---------+
2024-08-25 07:30:53,887 - mmdet - INFO - Epoch(val) [2][1685] sofa_AP_0.25: 0.7225, chair_AP_0.25: 0.5717, table_AP_0.25: 0.5446, cabinet_AP_0.25: 0.4122, toilet_AP_0.25: 0.8955, stool_AP_0.25: 0.1348, sink_AP_0.25: 0.2521, refrigerator_AP_0.25: 0.6451, shelf_AP_0.25: 0.3015, tv_monitor_AP_0.25: 0.0002, bathtub_AP_0.25: 0.9471, oven_AP_0.25: 0.4479, bed_AP_0.25: 0.8498, dishwasher_AP_0.25: 0.0576, washer_AP_0.25: 0.6842, stove_AP_0.25: 0.0968, fireplace_AP_0.25: 0.4308, mAP_0.25: 0.4703, sofa_rec_0.25: 0.8189, chair_rec_0.25: 0.8050, table_rec_0.25: 0.8154, cabinet_rec_0.25: 0.6089, toilet_rec_0.25: 0.9174, stool_rec_0.25: 0.4785, sink_rec_0.25: 0.3471, refrigerator_rec_0.25: 0.9024, shelf_rec_0.25: 0.5728, tv_monitor_rec_0.25: 0.0142, bathtub_rec_0.25: 0.9694, oven_rec_0.25: 0.6364, bed_rec_0.25: 0.9337, dishwasher_rec_0.25: 0.8400, washer_rec_0.25: 0.8070, stove_rec_0.25: 0.1837, fireplace_rec_0.25: 0.6852, mAR_0.25: 0.6668, sofa_AP_0.50: 0.3626, chair_AP_0.50: 0.1645, table_AP_0.50: 0.1551, cabinet_AP_0.50: 0.0739, toilet_AP_0.50: 0.6029, stool_AP_0.50: 0.0334, sink_AP_0.50: 0.0295, refrigerator_AP_0.50: 0.2178, shelf_AP_0.50: 0.0078, tv_monitor_AP_0.50: 0.0000, bathtub_AP_0.50: 0.6711, oven_AP_0.50: 0.0911, bed_AP_0.50: 0.5466, dishwasher_AP_0.50: 0.0070, washer_AP_0.50: 0.5446, stove_AP_0.50: 0.0000, fireplace_AP_0.50: 0.0427, mAP_0.50: 0.2089, sofa_rec_0.50: 0.4777, chair_rec_0.50: 0.3550, table_rec_0.50: 0.3203, cabinet_rec_0.50: 0.1854, toilet_rec_0.50: 0.6942, stool_rec_0.50: 0.1344, sink_rec_0.50: 0.0987, refrigerator_rec_0.50: 0.4146, shelf_rec_0.50: 0.0825, tv_monitor_rec_0.50: 0.0000, bathtub_rec_0.50: 0.7449, oven_rec_0.50: 0.2078, bed_rec_0.50: 0.6354, dishwasher_rec_0.50: 0.2000, washer_rec_0.50: 0.6053, stove_rec_0.50: 0.0000, fireplace_rec_0.50: 0.1667, mAR_0.50: 0.3131
2024-08-25 07:33:26,458 - mmdet - INFO - Epoch [3][50/1685] lr: 1.000e-04, eta: 13:15:05, time: 3.051, data_time: 0.143, memory: 19414, loss_occ: 0.5755, acc_occ: 0.8492, loss_centerness: 0.6200, loss_bbox: 0.5053, loss_cls: 0.3436, loss: 2.0446, grad_norm: 3.7735
2024-08-25 07:35:54,006 - mmdet - INFO - Epoch [3][100/1685] lr: 1.000e-04, eta: 13:13:10, time: 2.951, data_time: 0.012, memory: 19414, loss_occ: 0.5754, acc_occ: 0.8584, loss_centerness: 0.6224, loss_bbox: 0.4974, loss_cls: 0.3369, loss: 2.0322, grad_norm: 3.8853
2024-08-25 07:38:22,879 - mmdet - INFO - Epoch [3][150/1685] lr: 1.000e-04, eta: 13:11:20, time: 2.977, data_time: 0.011, memory: 19414, loss_occ: 0.5791, acc_occ: 0.8484, loss_centerness: 0.6175, loss_bbox: 0.5113, loss_cls: 0.3450, loss: 2.0529, grad_norm: 3.6792
2024-08-25 07:40:51,433 - mmdet - INFO - Epoch [3][200/1685] lr: 1.000e-04, eta: 13:09:28, time: 2.971, data_time: 0.010, memory: 19414, loss_occ: 0.5775, acc_occ: 0.8470, loss_centerness: 0.6217, loss_bbox: 0.5105, loss_cls: 0.3640, loss: 2.0737, grad_norm: 4.3458
2024-08-25 07:43:17,611 - mmdet - INFO - Epoch [3][250/1685] lr: 1.000e-04, eta: 13:07:24, time: 2.924, data_time: 0.011, memory: 19414, loss_occ: 0.5671, acc_occ: 0.8436, loss_centerness: 0.6215, loss_bbox: 0.5141, loss_cls: 0.3677, loss: 2.0703, grad_norm: 3.8524
2024-08-25 07:45:43,303 - mmdet - INFO - Epoch [3][300/1685] lr: 1.000e-04, eta: 13:05:17, time: 2.914, data_time: 0.011, memory: 19414, loss_occ: 0.5801, acc_occ: 0.8503, loss_centerness: 0.6237, loss_bbox: 0.5096, loss_cls: 0.3538, loss: 2.0671, grad_norm: 3.8458
2024-08-25 07:48:09,475 - mmdet - INFO - Epoch [3][350/1685] lr: 1.000e-04, eta: 13:03:11, time: 2.923, data_time: 0.011, memory: 19414, loss_occ: 0.5654, acc_occ: 0.8534, loss_centerness: 0.6225, loss_bbox: 0.5014, loss_cls: 0.3364, loss: 2.0256, grad_norm: 3.9020
2024-08-25 07:50:35,281 - mmdet - INFO - Epoch [3][400/1685] lr: 1.000e-04, eta: 13:01:04, time: 2.916, data_time: 0.011, memory: 19414, loss_occ: 0.5717, acc_occ: 0.8525, loss_centerness: 0.6269, loss_bbox: 0.4979, loss_cls: 0.3349, loss: 2.0313, grad_norm: 3.6806
2024-08-25 07:53:03,582 - mmdet - INFO - Epoch [3][450/1685] lr: 1.000e-04, eta: 12:59:06, time: 2.966, data_time: 0.010, memory: 19414, loss_occ: 0.5590, acc_occ: 0.8521, loss_centerness: 0.6192, loss_bbox: 0.5045, loss_cls: 0.3706, loss: 2.0535, grad_norm: 4.2073
2024-08-25 07:55:29,580 - mmdet - INFO - Epoch [3][500/1685] lr: 1.000e-04, eta: 12:56:59, time: 2.920, data_time: 0.010, memory: 19414, loss_occ: 0.5573, acc_occ: 0.8572, loss_centerness: 0.6208, loss_bbox: 0.4968, loss_cls: 0.3237, loss: 1.9987, grad_norm: 3.5005
2024-08-25 07:57:56,173 - mmdet - INFO - Epoch [3][550/1685] lr: 1.000e-04, eta: 12:54:53, time: 2.932, data_time: 0.015, memory: 19414, loss_occ: 0.5881, acc_occ: 0.8575, loss_centerness: 0.6210, loss_bbox: 0.4961, loss_cls: 0.3363, loss: 2.0415, grad_norm: 3.8404
2024-08-25 08:00:30,303 - mmdet - INFO - Epoch [3][600/1685] lr: 1.000e-04, eta: 12:53:17, time: 3.083, data_time: 0.012, memory: 19414, loss_occ: 0.5703, acc_occ: 0.8564, loss_centerness: 0.6186, loss_bbox: 0.4995, loss_cls: 0.3281, loss: 2.0164, grad_norm: 4.0124
2024-08-25 08:02:58,679 - mmdet - INFO - Epoch [3][650/1685] lr: 1.000e-04, eta: 12:51:17, time: 2.968, data_time: 0.012, memory: 19414, loss_occ: 0.5752, acc_occ: 0.8589, loss_centerness: 0.6223, loss_bbox: 0.5038, loss_cls: 0.3365, loss: 2.0377, grad_norm: 3.8202
2024-08-25 08:05:27,049 - mmdet - INFO - Epoch [3][700/1685] lr: 1.000e-04, eta: 12:49:16, time: 2.968, data_time: 0.013, memory: 19414, loss_occ: 0.5560, acc_occ: 0.8573, loss_centerness: 0.6186, loss_bbox: 0.4946, loss_cls: 0.3255, loss: 1.9947, grad_norm: 3.8528
2024-08-25 08:07:56,487 - mmdet - INFO - Epoch [3][750/1685] lr: 1.000e-04, eta: 12:47:19, time: 2.989, data_time: 0.012, memory: 19414, loss_occ: 0.5738, acc_occ: 0.8578, loss_centerness: 0.6192, loss_bbox: 0.4990, loss_cls: 0.3270, loss: 2.0190, grad_norm: 3.9651
2024-08-25 08:10:27,621 - mmdet - INFO - Epoch [3][800/1685] lr: 1.000e-04, eta: 12:45:27, time: 3.023, data_time: 0.014, memory: 19414, loss_occ: 0.5724, acc_occ: 0.8515, loss_centerness: 0.6196, loss_bbox: 0.4969, loss_cls: 0.3285, loss: 2.0174, grad_norm: 3.6684
2024-08-25 08:12:54,328 - mmdet - INFO - Epoch [3][850/1685] lr: 1.000e-04, eta: 12:43:18, time: 2.934, data_time: 0.015, memory: 19414, loss_occ: 0.5512, acc_occ: 0.8533, loss_centerness: 0.6153, loss_bbox: 0.4971, loss_cls: 0.3414, loss: 2.0051, grad_norm: 4.0131
2024-08-25 08:15:20,953 - mmdet - INFO - Epoch [3][900/1685] lr: 1.000e-04, eta: 12:41:08, time: 2.932, data_time: 0.013, memory: 19414, loss_occ: 0.5615, acc_occ: 0.8595, loss_centerness: 0.6262, loss_bbox: 0.4890, loss_cls: 0.3250, loss: 2.0016, grad_norm: 3.7509
2024-08-25 08:17:47,037 - mmdet - INFO - Epoch [3][950/1685] lr: 1.000e-04, eta: 12:38:56, time: 2.922, data_time: 0.015, memory: 19414, loss_occ: 0.5705, acc_occ: 0.8555, loss_centerness: 0.6209, loss_bbox: 0.4930, loss_cls: 0.3223, loss: 2.0067, grad_norm: 3.8320
2024-08-25 08:20:13,341 - mmdet - INFO - Epoch [3][1000/1685] lr: 1.000e-04, eta: 12:36:44, time: 2.926, data_time: 0.015, memory: 19414, loss_occ: 0.5804, acc_occ: 0.8560, loss_centerness: 0.6162, loss_bbox: 0.4901, loss_cls: 0.3199, loss: 2.0065, grad_norm: 3.9578
2024-08-25 08:22:34,412 - mmdet - INFO - Epoch [3][1050/1685] lr: 1.000e-04, eta: 12:34:13, time: 2.821, data_time: 0.019, memory: 19414, loss_occ: 0.5737, acc_occ: 0.8548, loss_centerness: 0.6215, loss_bbox: 0.4890, loss_cls: 0.3192, loss: 2.0034, grad_norm: 3.7970
2024-08-25 08:24:52,184 - mmdet - INFO - Epoch [3][1100/1685] lr: 1.000e-04, eta: 12:31:30, time: 2.755, data_time: 0.013, memory: 19414, loss_occ: 0.5604, acc_occ: 0.8554, loss_centerness: 0.6200, loss_bbox: 0.4874, loss_cls: 0.3212, loss: 1.9889, grad_norm: 3.9719
2024-08-25 08:27:11,377 - mmdet - INFO - Epoch [3][1150/1685] lr: 1.000e-04, eta: 12:28:53, time: 2.784, data_time: 0.012, memory: 19414, loss_occ: 0.5547, acc_occ: 0.8587, loss_centerness: 0.6214, loss_bbox: 0.4948, loss_cls: 0.3201, loss: 1.9910, grad_norm: 3.8271
2024-08-25 08:29:29,744 - mmdet - INFO - Epoch [3][1200/1685] lr: 1.000e-04, eta: 12:26:14, time: 2.767, data_time: 0.011, memory: 19414, loss_occ: 0.5544, acc_occ: 0.8606, loss_centerness: 0.6209, loss_bbox: 0.4897, loss_cls: 0.3226, loss: 1.9876, grad_norm: 3.7025
2024-08-25 08:31:50,960 - mmdet - INFO - Epoch [3][1250/1685] lr: 1.000e-04, eta: 12:23:45, time: 2.824, data_time: 0.013, memory: 19414, loss_occ: 0.5634, acc_occ: 0.8636, loss_centerness: 0.6170, loss_bbox: 0.4842, loss_cls: 0.3226, loss: 1.9873, grad_norm: 3.8786
2024-08-25 08:34:11,580 - mmdet - INFO - Epoch [3][1300/1685] lr: 1.000e-04, eta: 12:21:14, time: 2.812, data_time: 0.015, memory: 19414, loss_occ: 0.5743, acc_occ: 0.8563, loss_centerness: 0.6212, loss_bbox: 0.4920, loss_cls: 0.3318, loss: 2.0193, grad_norm: 3.6111
2024-08-25 08:36:36,776 - mmdet - INFO - Epoch [3][1350/1685] lr: 1.000e-04, eta: 12:18:58, time: 2.904, data_time: 0.015, memory: 19414, loss_occ: 0.5619, acc_occ: 0.8686, loss_centerness: 0.6180, loss_bbox: 0.4859, loss_cls: 0.3038, loss: 1.9697, grad_norm: 3.8362
2024-08-25 08:39:02,298 - mmdet - INFO - Epoch [3][1400/1685] lr: 1.000e-04, eta: 12:16:43, time: 2.910, data_time: 0.015, memory: 19414, loss_occ: 0.5575, acc_occ: 0.8575, loss_centerness: 0.6171, loss_bbox: 0.4842, loss_cls: 0.3134, loss: 1.9722, grad_norm: 3.8611
2024-08-25 08:41:27,647 - mmdet - INFO - Epoch [3][1450/1685] lr: 1.000e-04, eta: 12:14:27, time: 2.907, data_time: 0.013, memory: 19414, loss_occ: 0.5660, acc_occ: 0.8616, loss_centerness: 0.6156, loss_bbox: 0.4835, loss_cls: 0.3155, loss: 1.9805, grad_norm: 4.0443
2024-08-25 08:43:56,920 - mmdet - INFO - Epoch [3][1500/1685] lr: 1.000e-04, eta: 12:12:24, time: 2.985, data_time: 0.012, memory: 19414, loss_occ: 0.5615, acc_occ: 0.8636, loss_centerness: 0.6215, loss_bbox: 0.4852, loss_cls: 0.3128, loss: 1.9810, grad_norm: 3.7469
2024-08-25 08:46:23,862 - mmdet - INFO - Epoch [3][1550/1685] lr: 1.000e-04, eta: 12:10:13, time: 2.939, data_time: 0.012, memory: 19414, loss_occ: 0.5457, acc_occ: 0.8658, loss_centerness: 0.6216, loss_bbox: 0.4810, loss_cls: 0.3112, loss: 1.9596, grad_norm: 3.6854
2024-08-25 08:48:49,899 - mmdet - INFO - Epoch [3][1600/1685] lr: 1.000e-04, eta: 12:07:58, time: 2.921, data_time: 0.012, memory: 19414, loss_occ: 0.5692, acc_occ: 0.8659, loss_centerness: 0.6193, loss_bbox: 0.4837, loss_cls: 0.3325, loss: 2.0047, grad_norm: 3.9638
2024-08-25 08:51:15,883 - mmdet - INFO - Epoch [3][1650/1685] lr: 1.000e-04, eta: 12:05:43, time: 2.920, data_time: 0.012, memory: 19414, loss_occ: 0.5685, acc_occ: 0.8566, loss_centerness: 0.6212, loss_bbox: 0.4893, loss_cls: 0.3172, loss: 1.9961, grad_norm: 3.6845
2024-08-25 08:52:57,879 - mmdet - INFO - Saving checkpoint at 3 epochs
2024-08-25 08:55:11,454 - mmdet - INFO -
+--------------+---------+---------+---------+---------+
| classes | AP_0.25 | AR_0.25 | AP_0.50 | AR_0.50 |
+--------------+---------+---------+---------+---------+
| sofa | 0.7407 | 0.8373 | 0.4536 | 0.5617 |
| chair | 0.6437 | 0.8387 | 0.2828 | 0.4550 |
| table | 0.6076 | 0.8333 | 0.2542 | 0.4216 |
| cabinet | 0.4547 | 0.6195 | 0.1666 | 0.2732 |
| stool | 0.2098 | 0.5914 | 0.0749 | 0.2527 |
| tv_monitor | 0.0048 | 0.0676 | 0.0000 | 0.0000 |
| sink | 0.4025 | 0.4841 | 0.1042 | 0.1943 |
| refrigerator | 0.7362 | 0.9756 | 0.4490 | 0.6220 |
| shelf | 0.3342 | 0.5971 | 0.0314 | 0.1311 |
| toilet | 0.8888 | 0.9174 | 0.7211 | 0.7603 |
| oven | 0.5099 | 0.6948 | 0.1283 | 0.2857 |
| bed | 0.8599 | 0.9448 | 0.6339 | 0.7293 |
| dishwasher | 0.1113 | 0.8400 | 0.0816 | 0.4800 |
| fireplace | 0.5974 | 0.7222 | 0.0829 | 0.2222 |
| bathtub | 0.9488 | 0.9490 | 0.8297 | 0.8469 |
| washer | 0.7122 | 0.8684 | 0.5961 | 0.6842 |
| stove | 0.1065 | 0.2041 | 0.0037 | 0.0204 |
+--------------+---------+---------+---------+---------+
| Overall | 0.5217 | 0.7050 | 0.2879 | 0.4083 |
+--------------+---------+---------+---------+---------+
2024-08-25 08:55:11,976 - mmdet - INFO - Epoch(val) [3][1685] sofa_AP_0.25: 0.7407, chair_AP_0.25: 0.6437, table_AP_0.25: 0.6076, cabinet_AP_0.25: 0.4547, stool_AP_0.25: 0.2098, tv_monitor_AP_0.25: 0.0048, sink_AP_0.25: 0.4025, refrigerator_AP_0.25: 0.7362, shelf_AP_0.25: 0.3342, toilet_AP_0.25: 0.8888, oven_AP_0.25: 0.5099, bed_AP_0.25: 0.8599, dishwasher_AP_0.25: 0.1113, fireplace_AP_0.25: 0.5974, bathtub_AP_0.25: 0.9488, washer_AP_0.25: 0.7122, stove_AP_0.25: 0.1065, mAP_0.25: 0.5217, sofa_rec_0.25: 0.8373, chair_rec_0.25: 0.8387, table_rec_0.25: 0.8333, cabinet_rec_0.25: 0.6195, stool_rec_0.25: 0.5914, tv_monitor_rec_0.25: 0.0676, sink_rec_0.25: 0.4841, refrigerator_rec_0.25: 0.9756, shelf_rec_0.25: 0.5971, toilet_rec_0.25: 0.9174, oven_rec_0.25: 0.6948, bed_rec_0.25: 0.9448, dishwasher_rec_0.25: 0.8400, fireplace_rec_0.25: 0.7222, bathtub_rec_0.25: 0.9490, washer_rec_0.25: 0.8684, stove_rec_0.25: 0.2041, mAR_0.25: 0.7050, sofa_AP_0.50: 0.4536, chair_AP_0.50: 0.2828, table_AP_0.50: 0.2542, cabinet_AP_0.50: 0.1666, stool_AP_0.50: 0.0749, tv_monitor_AP_0.50: 0.0000, sink_AP_0.50: 0.1042, refrigerator_AP_0.50: 0.4490, shelf_AP_0.50: 0.0314, toilet_AP_0.50: 0.7211, oven_AP_0.50: 0.1283, bed_AP_0.50: 0.6339, dishwasher_AP_0.50: 0.0816, fireplace_AP_0.50: 0.0829, bathtub_AP_0.50: 0.8297, washer_AP_0.50: 0.5961, stove_AP_0.50: 0.0037, mAP_0.50: 0.2879, sofa_rec_0.50: 0.5617, chair_rec_0.50: 0.4550, table_rec_0.50: 0.4216, cabinet_rec_0.50: 0.2732, stool_rec_0.50: 0.2527, tv_monitor_rec_0.50: 0.0000, sink_rec_0.50: 0.1943, refrigerator_rec_0.50: 0.6220, shelf_rec_0.50: 0.1311, toilet_rec_0.50: 0.7603, oven_rec_0.50: 0.2857, bed_rec_0.50: 0.7293, dishwasher_rec_0.50: 0.4800, fireplace_rec_0.50: 0.2222, bathtub_rec_0.50: 0.8469, washer_rec_0.50: 0.6842, stove_rec_0.50: 0.0204, mAR_0.50: 0.4083
2024-08-25 08:57:46,727 - mmdet - INFO - Epoch [4][50/1685] lr: 1.000e-04, eta: 11:57:17, time: 3.095, data_time: 0.132, memory: 19414, loss_occ: 0.5490, acc_occ: 0.8616, loss_centerness: 0.6212, loss_bbox: 0.4847, loss_cls: 0.3125, loss: 1.9674, grad_norm: 3.7879
2024-08-25 09:00:14,300 - mmdet - INFO - Epoch [4][100/1685] lr: 1.000e-04, eta: 11:55:10, time: 2.951, data_time: 0.011, memory: 19414, loss_occ: 0.5625, acc_occ: 0.8631, loss_centerness: 0.6138, loss_bbox: 0.4768, loss_cls: 0.3014, loss: 1.9545, grad_norm: 3.7338
2024-08-25 09:02:48,161 - mmdet - INFO - Epoch [4][150/1685] lr: 1.000e-04, eta: 11:53:20, time: 3.077, data_time: 0.010, memory: 19414, loss_occ: 0.5627, acc_occ: 0.8620, loss_centerness: 0.6137, loss_bbox: 0.4841, loss_cls: 0.3126, loss: 1.9730, grad_norm: 3.8393
2024-08-25 09:05:15,926 - mmdet - INFO - Epoch [4][200/1685] lr: 1.000e-04, eta: 11:51:13, time: 2.955, data_time: 0.014, memory: 19414, loss_occ: 0.5803, acc_occ: 0.8642, loss_centerness: 0.6172, loss_bbox: 0.4755, loss_cls: 0.2993, loss: 1.9722, grad_norm: 3.7564
2024-08-25 09:07:43,692 - mmdet - INFO - Epoch [4][250/1685] lr: 1.000e-04, eta: 11:49:05, time: 2.955, data_time: 0.012, memory: 19414, loss_occ: 0.5557, acc_occ: 0.8598, loss_centerness: 0.6189, loss_bbox: 0.4790, loss_cls: 0.3107, loss: 1.9642, grad_norm: 3.8044
2024-08-25 09:10:13,232 - mmdet - INFO - Epoch [4][300/1685] lr: 1.000e-04, eta: 11:47:01, time: 2.991, data_time: 0.012, memory: 19414, loss_occ: 0.5681, acc_occ: 0.8605, loss_centerness: 0.6196, loss_bbox: 0.4832, loss_cls: 0.3243, loss: 1.9953, grad_norm: 3.8317
2024-08-25 09:12:43,521 - mmdet - INFO - Epoch [4][350/1685] lr: 1.000e-04, eta: 11:45:00, time: 3.006, data_time: 0.011, memory: 19414, loss_occ: 0.5541, acc_occ: 0.8651, loss_centerness: 0.6142, loss_bbox: 0.4773, loss_cls: 0.3081, loss: 1.9537, grad_norm: 3.8020
2024-08-25 09:15:12,690 - mmdet - INFO - Epoch [4][400/1685] lr: 1.000e-04, eta: 11:42:54, time: 2.983, data_time: 0.011, memory: 19414, loss_occ: 0.5415, acc_occ: 0.8665, loss_centerness: 0.6195, loss_bbox: 0.4703, loss_cls: 0.2974, loss: 1.9287, grad_norm: 3.7386
2024-08-25 09:17:42,493 - mmdet - INFO - Epoch [4][450/1685] lr: 1.000e-04, eta: 11:40:50, time: 2.996, data_time: 0.013, memory: 19414, loss_occ: 0.5695, acc_occ: 0.8626, loss_centerness: 0.6137, loss_bbox: 0.4776, loss_cls: 0.3027, loss: 1.9635, grad_norm: 3.8683
2024-08-25 09:20:10,593 - mmdet - INFO - Epoch [4][500/1685] lr: 1.000e-04, eta: 11:38:41, time: 2.962, data_time: 0.013, memory: 19414, loss_occ: 0.5544, acc_occ: 0.8638, loss_centerness: 0.6203, loss_bbox: 0.4711, loss_cls: 0.2992, loss: 1.9450, grad_norm: 3.8051
2024-08-25 09:22:36,701 - mmdet - INFO - Epoch [4][550/1685] lr: 1.000e-04, eta: 11:36:26, time: 2.922, data_time: 0.015, memory: 19414, loss_occ: 0.5521, acc_occ: 0.8649, loss_centerness: 0.6158, loss_bbox: 0.4748, loss_cls: 0.3083, loss: 1.9510, grad_norm: 3.9048
2024-08-25 09:25:03,799 - mmdet - INFO - Epoch [4][600/1685] lr: 1.000e-04, eta: 11:34:14, time: 2.942, data_time: 0.014, memory: 19414, loss_occ: 0.5511, acc_occ: 0.8654, loss_centerness: 0.6152, loss_bbox: 0.4725, loss_cls: 0.2970, loss: 1.9358, grad_norm: 3.5560
2024-08-25 09:27:29,969 - mmdet - INFO - Epoch [4][650/1685] lr: 1.000e-04, eta: 11:31:59, time: 2.923, data_time: 0.015, memory: 19416, loss_occ: 0.5399, acc_occ: 0.8625, loss_centerness: 0.6169, loss_bbox: 0.4687, loss_cls: 0.2986, loss: 1.9242, grad_norm: 3.7578
2024-08-25 09:29:59,365 - mmdet - INFO - Epoch [4][700/1685] lr: 1.000e-04, eta: 11:29:52, time: 2.988, data_time: 0.014, memory: 19416, loss_occ: 0.5577, acc_occ: 0.8656, loss_centerness: 0.6157, loss_bbox: 0.4766, loss_cls: 0.3029, loss: 1.9529, grad_norm: 3.7215
2024-08-25 09:32:26,162 - mmdet - INFO - Epoch [4][750/1685] lr: 1.000e-04, eta: 11:27:38, time: 2.936, data_time: 0.015, memory: 19416, loss_occ: 0.5442, acc_occ: 0.8636, loss_centerness: 0.6160, loss_bbox: 0.4732, loss_cls: 0.2967, loss: 1.9300, grad_norm: 3.8198
2024-08-25 09:34:53,595 - mmdet - INFO - Epoch [4][800/1685] lr: 1.000e-04, eta: 11:25:26, time: 2.949, data_time: 0.014, memory: 19416, loss_occ: 0.5655, acc_occ: 0.8662, loss_centerness: 0.6191, loss_bbox: 0.4706, loss_cls: 0.2956, loss: 1.9507, grad_norm: 3.7698
2024-08-25 09:37:19,364 - mmdet - INFO - Epoch [4][850/1685] lr: 1.000e-04, eta: 11:23:09, time: 2.915, data_time: 0.016, memory: 19416, loss_occ: 0.5443, acc_occ: 0.8678, loss_centerness: 0.6181, loss_bbox: 0.4669, loss_cls: 0.2942, loss: 1.9234, grad_norm: 3.8403
2024-08-25 09:39:43,117 - mmdet - INFO - Epoch [4][900/1685] lr: 1.000e-04, eta: 11:20:47, time: 2.875, data_time: 0.014, memory: 19416, loss_occ: 0.5689, acc_occ: 0.8671, loss_centerness: 0.6207, loss_bbox: 0.4705, loss_cls: 0.2978, loss: 1.9579, grad_norm: 3.6953
2024-08-25 09:42:08,575 - mmdet - INFO - Epoch [4][950/1685] lr: 1.000e-04, eta: 11:18:29, time: 2.909, data_time: 0.014, memory: 19416, loss_occ: 0.5827, acc_occ: 0.8723, loss_centerness: 0.6153, loss_bbox: 0.4706, loss_cls: 0.2995, loss: 1.9682, grad_norm: 3.9222
2024-08-25 09:44:36,054 - mmdet - INFO - Epoch [4][1000/1685] lr: 1.000e-04, eta: 11:16:16, time: 2.950, data_time: 0.014, memory: 19416, loss_occ: 0.5450, acc_occ: 0.8637, loss_centerness: 0.6112, loss_bbox: 0.4623, loss_cls: 0.2869, loss: 1.9054, grad_norm: 3.5630
2024-08-25 09:47:03,240 - mmdet - INFO - Epoch [4][1050/1685] lr: 1.000e-04, eta: 11:14:02, time: 2.944, data_time: 0.015, memory: 19416, loss_occ: 0.5673, acc_occ: 0.8724, loss_centerness: 0.6192, loss_bbox: 0.4687, loss_cls: 0.2883, loss: 1.9435, grad_norm: 3.7747
2024-08-25 09:49:30,389 - mmdet - INFO - Epoch [4][1100/1685] lr: 1.000e-04, eta: 11:11:48, time: 2.943, data_time: 0.014, memory: 19416, loss_occ: 0.5545, acc_occ: 0.8685, loss_centerness: 0.6193, loss_bbox: 0.4648, loss_cls: 0.2930, loss: 1.9316, grad_norm: 3.6059
2024-08-25 09:51:58,443 - mmdet - INFO - Epoch [4][1150/1685] lr: 1.000e-04, eta: 11:09:35, time: 2.961, data_time: 0.013, memory: 19416, loss_occ: 0.5502, acc_occ: 0.8688, loss_centerness: 0.6155, loss_bbox: 0.4617, loss_cls: 0.2834, loss: 1.9108, grad_norm: 3.8864
2024-08-25 09:54:23,228 - mmdet - INFO - Epoch [4][1200/1685] lr: 1.000e-04, eta: 11:07:15, time: 2.896, data_time: 0.014, memory: 19416, loss_occ: 0.5615, acc_occ: 0.8577, loss_centerness: 0.6179, loss_bbox: 0.4877, loss_cls: 0.3734, loss: 2.0405, grad_norm: 4.4077
2024-08-25 09:56:50,463 - mmdet - INFO - Epoch [4][1250/1685] lr: 1.000e-04, eta: 11:05:00, time: 2.945, data_time: 0.013, memory: 19416, loss_occ: 0.5568, acc_occ: 0.8623, loss_centerness: 0.6169, loss_bbox: 0.4703, loss_cls: 0.3068, loss: 1.9507, grad_norm: 3.4608
2024-08-25 09:59:16,791 - mmdet - INFO - Epoch [4][1300/1685] lr: 1.000e-04, eta: 11:02:43, time: 2.927, data_time: 0.016, memory: 19416, loss_occ: 0.5554, acc_occ: 0.8672, loss_centerness: 0.6157, loss_bbox: 0.4707, loss_cls: 0.3019, loss: 1.9437, grad_norm: 3.6677
2024-08-25 10:01:44,697 - mmdet - INFO - Epoch [4][1350/1685] lr: 1.000e-04, eta: 11:00:30, time: 2.958, data_time: 0.016, memory: 19416, loss_occ: 0.5360, acc_occ: 0.8741, loss_centerness: 0.6133, loss_bbox: 0.4587, loss_cls: 0.2841, loss: 1.8921, grad_norm: 3.7410
2024-08-25 10:04:09,692 - mmdet - INFO - Epoch [4][1400/1685] lr: 1.000e-04, eta: 10:58:10, time: 2.900, data_time: 0.015, memory: 19416, loss_occ: 0.5542, acc_occ: 0.8692, loss_centerness: 0.6150, loss_bbox: 0.4614, loss_cls: 0.2918, loss: 1.9225, grad_norm: 3.6994
2024-08-25 10:06:33,669 - mmdet - INFO - Epoch [4][1450/1685] lr: 1.000e-04, eta: 10:55:47, time: 2.880, data_time: 0.015, memory: 19416, loss_occ: 0.5509, acc_occ: 0.8698, loss_centerness: 0.6171, loss_bbox: 0.4689, loss_cls: 0.2883, loss: 1.9252, grad_norm: 3.6123
2024-08-25 10:08:53,432 - mmdet - INFO - Epoch [4][1500/1685] lr: 1.000e-04, eta: 10:53:16, time: 2.795, data_time: 0.013, memory: 19416, loss_occ: 0.5406, acc_occ: 0.8677, loss_centerness: 0.6189, loss_bbox: 0.4604, loss_cls: 0.2879, loss: 1.9079, grad_norm: 3.7760
2024-08-25 10:11:14,305 - mmdet - INFO - Epoch [4][1550/1685] lr: 1.000e-04, eta: 10:50:47, time: 2.817, data_time: 0.012, memory: 19416, loss_occ: 0.5571, acc_occ: 0.8672, loss_centerness: 0.6174, loss_bbox: 0.4544, loss_cls: 0.2808, loss: 1.9098, grad_norm: 3.6226
2024-08-25 10:13:34,261 - mmdet - INFO - Epoch [4][1600/1685] lr: 1.000e-04, eta: 10:48:17, time: 2.799, data_time: 0.011, memory: 19416, loss_occ: 0.5597, acc_occ: 0.8707, loss_centerness: 0.6174, loss_bbox: 0.4642, loss_cls: 0.2931, loss: 1.9345, grad_norm: 3.4907
2024-08-25 10:15:53,315 - mmdet - INFO - Epoch [4][1650/1685] lr: 1.000e-04, eta: 10:45:45, time: 2.781, data_time: 0.010, memory: 19416, loss_occ: 0.5560, acc_occ: 0.8701, loss_centerness: 0.6169, loss_bbox: 0.4639, loss_cls: 0.2868, loss: 1.9235, grad_norm: 3.8234
2024-08-25 10:17:30,780 - mmdet - INFO - Saving checkpoint at 4 epochs
2024-08-25 10:19:41,657 - mmdet - INFO -
+--------------+---------+---------+---------+---------+
| classes | AP_0.25 | AR_0.25 | AP_0.50 | AR_0.50 |
+--------------+---------+---------+---------+---------+
| sofa | 0.7521 | 0.8478 | 0.5125 | 0.6142 |
| chair | 0.6490 | 0.8263 | 0.3483 | 0.4888 |
| table | 0.6267 | 0.8627 | 0.3106 | 0.4673 |
| cabinet | 0.5034 | 0.6483 | 0.2043 | 0.3184 |
| stool | 0.2284 | 0.6344 | 0.1006 | 0.3172 |
| tv_monitor | 0.0112 | 0.0996 | 0.0000 | 0.0036 |
| oven | 0.5368 | 0.6753 | 0.3211 | 0.4351 |
| shelf | 0.3837 | 0.6165 | 0.0668 | 0.1650 |
| sink | 0.4470 | 0.5032 | 0.1323 | 0.1943 |
| refrigerator | 0.7426 | 0.9268 | 0.5972 | 0.7195 |
| toilet | 0.8909 | 0.9339 | 0.7526 | 0.7851 |
| dishwasher | 0.1436 | 0.8800 | 0.1292 | 0.6400 |
| stove | 0.1161 | 0.2245 | 0.0133 | 0.0408 |
| fireplace | 0.5960 | 0.7222 | 0.1914 | 0.3704 |
| bed | 0.8611 | 0.9558 | 0.7235 | 0.7735 |
| bathtub | 0.9488 | 0.9592 | 0.8543 | 0.8776 |
| washer | 0.7310 | 0.8772 | 0.6066 | 0.7018 |
+--------------+---------+---------+---------+---------+
| Overall | 0.5393 | 0.7173 | 0.3450 | 0.4654 |
+--------------+---------+---------+---------+---------+
2024-08-25 10:19:42,115 - mmdet - INFO - Epoch(val) [4][1685] sofa_AP_0.25: 0.7521, chair_AP_0.25: 0.6490, table_AP_0.25: 0.6267, cabinet_AP_0.25: 0.5034, stool_AP_0.25: 0.2284, tv_monitor_AP_0.25: 0.0112, oven_AP_0.25: 0.5368, shelf_AP_0.25: 0.3837, sink_AP_0.25: 0.4470, refrigerator_AP_0.25: 0.7426, toilet_AP_0.25: 0.8909, dishwasher_AP_0.25: 0.1436, stove_AP_0.25: 0.1161, fireplace_AP_0.25: 0.5960, bed_AP_0.25: 0.8611, bathtub_AP_0.25: 0.9488, washer_AP_0.25: 0.7310, mAP_0.25: 0.5393, sofa_rec_0.25: 0.8478, chair_rec_0.25: 0.8263, table_rec_0.25: 0.8627, cabinet_rec_0.25: 0.6483, stool_rec_0.25: 0.6344, tv_monitor_rec_0.25: 0.0996, oven_rec_0.25: 0.6753, shelf_rec_0.25: 0.6165, sink_rec_0.25: 0.5032, refrigerator_rec_0.25: 0.9268, toilet_rec_0.25: 0.9339, dishwasher_rec_0.25: 0.8800, stove_rec_0.25: 0.2245, fireplace_rec_0.25: 0.7222, bed_rec_0.25: 0.9558, bathtub_rec_0.25: 0.9592, washer_rec_0.25: 0.8772, mAR_0.25: 0.7173, sofa_AP_0.50: 0.5125, chair_AP_0.50: 0.3483, table_AP_0.50: 0.3106, cabinet_AP_0.50: 0.2043, stool_AP_0.50: 0.1006, tv_monitor_AP_0.50: 0.0000, oven_AP_0.50: 0.3211, shelf_AP_0.50: 0.0668, sink_AP_0.50: 0.1323, refrigerator_AP_0.50: 0.5972, toilet_AP_0.50: 0.7526, dishwasher_AP_0.50: 0.1292, stove_AP_0.50: 0.0133, fireplace_AP_0.50: 0.1914, bed_AP_0.50: 0.7235, bathtub_AP_0.50: 0.8543, washer_AP_0.50: 0.6066, mAP_0.50: 0.3450, sofa_rec_0.50: 0.6142, chair_rec_0.50: 0.4888, table_rec_0.50: 0.4673, cabinet_rec_0.50: 0.3184, stool_rec_0.50: 0.3172, tv_monitor_rec_0.50: 0.0036, oven_rec_0.50: 0.4351, shelf_rec_0.50: 0.1650, sink_rec_0.50: 0.1943, refrigerator_rec_0.50: 0.7195, toilet_rec_0.50: 0.7851, dishwasher_rec_0.50: 0.6400, stove_rec_0.50: 0.0408, fireplace_rec_0.50: 0.3704, bed_rec_0.50: 0.7735, bathtub_rec_0.50: 0.8776, washer_rec_0.50: 0.7018, mAR_0.50: 0.4654
2024-08-25 10:22:16,661 - mmdet - INFO - Epoch [5][50/1685] lr: 1.000e-04, eta: 10:38:45, time: 3.090, data_time: 0.138, memory: 19416, loss_occ: 0.5580, acc_occ: 0.8707, loss_centerness: 0.6131, loss_bbox: 0.4558, loss_cls: 0.2788, loss: 1.9058, grad_norm: 3.7487
2024-08-25 10:24:43,597 - mmdet - INFO - Epoch [5][100/1685] lr: 1.000e-04, eta: 10:36:31, time: 2.939, data_time: 0.011, memory: 19416, loss_occ: 0.5452, acc_occ: 0.8711, loss_centerness: 0.6149, loss_bbox: 0.4555, loss_cls: 0.2745, loss: 1.8901, grad_norm: 3.6880
2024-08-25 10:27:11,357 - mmdet - INFO - Epoch [5][150/1685] lr: 1.000e-04, eta: 10:34:18, time: 2.955, data_time: 0.010, memory: 19416, loss_occ: 0.5553, acc_occ: 0.8687, loss_centerness: 0.6173, loss_bbox: 0.4635, loss_cls: 0.2851, loss: 1.9212, grad_norm: 3.6172
2024-08-25 10:29:39,198 - mmdet - INFO - Epoch [5][200/1685] lr: 1.000e-04, eta: 10:32:05, time: 2.957, data_time: 0.011, memory: 19416, loss_occ: 0.5613, acc_occ: 0.8684, loss_centerness: 0.6138, loss_bbox: 0.4543, loss_cls: 0.2757, loss: 1.9051, grad_norm: 3.5568
2024-08-25 10:32:08,590 - mmdet - INFO - Epoch [5][250/1685] lr: 1.000e-04, eta: 10:29:54, time: 2.988, data_time: 0.010, memory: 19416, loss_occ: 0.5617, acc_occ: 0.8721, loss_centerness: 0.6162, loss_bbox: 0.4563, loss_cls: 0.2722, loss: 1.9064, grad_norm: 3.7866
2024-08-25 10:34:37,150 - mmdet - INFO - Epoch [5][300/1685] lr: 1.000e-04, eta: 10:27:42, time: 2.971, data_time: 0.010, memory: 19416, loss_occ: 0.5436, acc_occ: 0.8696, loss_centerness: 0.6149, loss_bbox: 0.4586, loss_cls: 0.2819, loss: 1.8991, grad_norm: 3.8712
2024-08-25 10:37:04,637 - mmdet - INFO - Epoch [5][350/1685] lr: 1.000e-04, eta: 10:25:28, time: 2.950, data_time: 0.013, memory: 19416, loss_occ: 0.5370, acc_occ: 0.8681, loss_centerness: 0.6183, loss_bbox: 0.4582, loss_cls: 0.2800, loss: 1.8935, grad_norm: 3.9388
2024-08-25 10:39:31,480 - mmdet - INFO - Epoch [5][400/1685] lr: 1.000e-04, eta: 10:23:12, time: 2.937, data_time: 0.017, memory: 19416, loss_occ: 0.5342, acc_occ: 0.8646, loss_centerness: 0.6199, loss_bbox: 0.4533, loss_cls: 0.2730, loss: 1.8806, grad_norm: 3.6685
2024-08-25 10:41:59,199 - mmdet - INFO - Epoch [5][450/1685] lr: 1.000e-04, eta: 10:20:58, time: 2.954, data_time: 0.018, memory: 19416, loss_occ: 0.5401, acc_occ: 0.8717, loss_centerness: 0.6123, loss_bbox: 0.4560, loss_cls: 0.2742, loss: 1.8825, grad_norm: 3.5925
2024-08-25 10:44:26,868 - mmdet - INFO - Epoch [5][500/1685] lr: 1.000e-04, eta: 10:18:43, time: 2.953, data_time: 0.015, memory: 19416, loss_occ: 0.5472, acc_occ: 0.8742, loss_centerness: 0.6151, loss_bbox: 0.4490, loss_cls: 0.2660, loss: 1.8772, grad_norm: 3.7758
2024-08-25 10:46:51,535 - mmdet - INFO - Epoch [5][550/1685] lr: 1.000e-04, eta: 10:16:23, time: 2.893, data_time: 0.015, memory: 19416, loss_occ: 0.5558, acc_occ: 0.8728, loss_centerness: 0.6115, loss_bbox: 0.4600, loss_cls: 0.2808, loss: 1.9082, grad_norm: 3.7766
2024-08-25 10:49:20,808 - mmdet - INFO - Epoch [5][600/1685] lr: 1.000e-04, eta: 10:14:11, time: 2.985, data_time: 0.017, memory: 19416, loss_occ: 0.5523, acc_occ: 0.8753, loss_centerness: 0.6107, loss_bbox: 0.4499, loss_cls: 0.2701, loss: 1.8830, grad_norm: 4.0132
2024-08-25 10:51:50,914 - mmdet - INFO - Epoch [5][650/1685] lr: 1.000e-04, eta: 10:12:00, time: 3.002, data_time: 0.015, memory: 19416, loss_occ: 0.5578, acc_occ: 0.8734, loss_centerness: 0.6182, loss_bbox: 0.4477, loss_cls: 0.2748, loss: 1.8984, grad_norm: 3.6875
2024-08-25 10:54:19,720 - mmdet - INFO - Epoch [5][700/1685] lr: 1.000e-04, eta: 10:09:47, time: 2.976, data_time: 0.014, memory: 19416, loss_occ: 0.5471, acc_occ: 0.8754, loss_centerness: 0.6175, loss_bbox: 0.4443, loss_cls: 0.2652, loss: 1.8742, grad_norm: 3.7580
2024-08-25 10:56:46,472 - mmdet - INFO - Epoch [5][750/1685] lr: 1.000e-04, eta: 10:07:30, time: 2.935, data_time: 0.016, memory: 19416, loss_occ: 0.5515, acc_occ: 0.8727, loss_centerness: 0.6128, loss_bbox: 0.4546, loss_cls: 0.2747, loss: 1.8935, grad_norm: 3.6431
2024-08-25 10:59:11,053 - mmdet - INFO - Epoch [5][800/1685] lr: 1.000e-04, eta: 10:05:09, time: 2.892, data_time: 0.014, memory: 19416, loss_occ: 0.5397, acc_occ: 0.8690, loss_centerness: 0.6167, loss_bbox: 0.4501, loss_cls: 0.2776, loss: 1.8841, grad_norm: 3.7005
2024-08-25 11:01:37,035 - mmdet - INFO - Epoch [5][850/1685] lr: 1.000e-04, eta: 10:02:51, time: 2.920, data_time: 0.014, memory: 19416, loss_occ: 0.5421, acc_occ: 0.8742, loss_centerness: 0.6167, loss_bbox: 0.4521, loss_cls: 0.2740, loss: 1.8849, grad_norm: 3.6553
2024-08-25 11:04:04,555 - mmdet - INFO - Epoch [5][900/1685] lr: 1.000e-04, eta: 10:00:35, time: 2.950, data_time: 0.015, memory: 19416, loss_occ: 0.5719, acc_occ: 0.8731, loss_centerness: 0.6092, loss_bbox: 0.4502, loss_cls: 0.2660, loss: 1.8972, grad_norm: 3.6441
2024-08-25 11:06:31,037 - mmdet - INFO - Epoch [5][950/1685] lr: 1.000e-04, eta: 9:58:17, time: 2.930, data_time: 0.015, memory: 19416, loss_occ: 0.5647, acc_occ: 0.8678, loss_centerness: 0.6158, loss_bbox: 0.4532, loss_cls: 0.2769, loss: 1.9107, grad_norm: 3.5294
2024-08-25 11:08:57,818 - mmdet - INFO - Epoch [5][1000/1685] lr: 1.000e-04, eta: 9:55:59, time: 2.936, data_time: 0.019, memory: 19416, loss_occ: 0.5401, acc_occ: 0.8724, loss_centerness: 0.6166, loss_bbox: 0.4575, loss_cls: 0.2797, loss: 1.8938, grad_norm: 3.6779
2024-08-25 11:11:32,431 - mmdet - INFO - Epoch [5][1050/1685] lr: 1.000e-04, eta: 9:53:54, time: 3.092, data_time: 0.014, memory: 19416, loss_occ: 0.5498, acc_occ: 0.8742, loss_centerness: 0.6134, loss_bbox: 0.4541, loss_cls: 0.2736, loss: 1.8908, grad_norm: 3.7654
2024-08-25 11:14:00,368 - mmdet - INFO - Epoch [5][1100/1685] lr: 1.000e-04, eta: 9:51:38, time: 2.959, data_time: 0.012, memory: 19416, loss_occ: 0.5364, acc_occ: 0.8727, loss_centerness: 0.6158, loss_bbox: 0.4470, loss_cls: 0.2736, loss: 1.8728, grad_norm: 3.5908
2024-08-25 11:16:28,017 - mmdet - INFO - Epoch [5][1150/1685] lr: 1.000e-04, eta: 9:49:21, time: 2.953, data_time: 0.015, memory: 19416, loss_occ: 0.5355, acc_occ: 0.8761, loss_centerness: 0.6114, loss_bbox: 0.4448, loss_cls: 0.2903, loss: 1.8820, grad_norm: 4.1318
2024-08-25 11:18:50,543 - mmdet - INFO - Epoch [5][1200/1685] lr: 1.000e-04, eta: 9:46:57, time: 2.851, data_time: 0.014, memory: 19416, loss_occ: 0.5544, acc_occ: 0.8675, loss_centerness: 0.6112, loss_bbox: 0.4532, loss_cls: 0.2999, loss: 1.9186, grad_norm: 3.7285
2024-08-25 11:21:14,509 - mmdet - INFO - Epoch [5][1250/1685] lr: 1.000e-04, eta: 9:44:34, time: 2.879, data_time: 0.014, memory: 19416, loss_occ: 0.5509, acc_occ: 0.8706, loss_centerness: 0.6099, loss_bbox: 0.4467, loss_cls: 0.2830, loss: 1.8904, grad_norm: 4.0024
2024-08-25 11:23:38,300 - mmdet - INFO - Epoch [5][1300/1685] lr: 1.000e-04, eta: 9:42:11, time: 2.876, data_time: 0.015, memory: 19416, loss_occ: 0.5469, acc_occ: 0.8739, loss_centerness: 0.6163, loss_bbox: 0.4502, loss_cls: 0.2814, loss: 1.8949, grad_norm: 3.9314
2024-08-25 11:26:02,964 - mmdet - INFO - Epoch [5][1350/1685] lr: 1.000e-04, eta: 9:39:50, time: 2.893, data_time: 0.015, memory: 19416, loss_occ: 0.5322, acc_occ: 0.8741, loss_centerness: 0.6141, loss_bbox: 0.4439, loss_cls: 0.2687, loss: 1.8589, grad_norm: 3.5144
2024-08-25 11:28:29,044 - mmdet - INFO - Epoch [5][1400/1685] lr: 1.000e-04, eta: 9:37:30, time: 2.922, data_time: 0.014, memory: 19416, loss_occ: 0.5582, acc_occ: 0.8726, loss_centerness: 0.6155, loss_bbox: 0.4493, loss_cls: 0.2754, loss: 1.8985, grad_norm: 3.5284
2024-08-25 11:30:54,927 - mmdet - INFO - Epoch [5][1450/1685] lr: 1.000e-04, eta: 9:35:10, time: 2.918, data_time: 0.013, memory: 19416, loss_occ: 0.5766, acc_occ: 0.8731, loss_centerness: 0.6162, loss_bbox: 0.4424, loss_cls: 0.2650, loss: 1.9003, grad_norm: 3.7211
2024-08-25 11:33:19,807 - mmdet - INFO - Epoch [5][1500/1685] lr: 1.000e-04, eta: 9:32:49, time: 2.898, data_time: 0.015, memory: 19416, loss_occ: 0.5489, acc_occ: 0.8732, loss_centerness: 0.6113, loss_bbox: 0.4414, loss_cls: 0.2622, loss: 1.8639, grad_norm: 3.8783
2024-08-25 11:35:47,335 - mmdet - INFO - Epoch [5][1550/1685] lr: 1.000e-04, eta: 9:30:32, time: 2.951, data_time: 0.016, memory: 19416, loss_occ: 0.5309, acc_occ: 0.8775, loss_centerness: 0.6121, loss_bbox: 0.4517, loss_cls: 0.2709, loss: 1.8658, grad_norm: 3.6135
2024-08-25 11:38:14,442 - mmdet - INFO - Epoch [5][1600/1685] lr: 1.000e-04, eta: 9:28:13, time: 2.942, data_time: 0.014, memory: 19416, loss_occ: 0.5505, acc_occ: 0.8764, loss_centerness: 0.6140, loss_bbox: 0.4458, loss_cls: 0.2735, loss: 1.8838, grad_norm: 3.5788
2024-08-25 11:40:40,860 - mmdet - INFO - Epoch [5][1650/1685] lr: 1.000e-04, eta: 9:25:54, time: 2.928, data_time: 0.014, memory: 19416, loss_occ: 0.5331, acc_occ: 0.8760, loss_centerness: 0.6133, loss_bbox: 0.4416, loss_cls: 0.2630, loss: 1.8509, grad_norm: 3.5817
2024-08-25 11:42:24,703 - mmdet - INFO - Saving checkpoint at 5 epochs
2024-08-25 11:44:36,676 - mmdet - INFO -
+--------------+---------+---------+---------+---------+
| classes | AP_0.25 | AR_0.25 | AP_0.50 | AR_0.50 |
+--------------+---------+---------+---------+---------+
| sofa | 0.7555 | 0.8451 | 0.5960 | 0.6640 |
| chair | 0.6758 | 0.8450 | 0.3618 | 0.5088 |
| table | 0.6700 | 0.8644 | 0.3421 | 0.5033 |
| cabinet | 0.5055 | 0.6506 | 0.2123 | 0.3259 |
| stool | 0.1830 | 0.5860 | 0.0796 | 0.2419 |
| tv_monitor | 0.0223 | 0.1068 | 0.0000 | 0.0000 |
| refrigerator | 0.7631 | 0.9512 | 0.6519 | 0.7561 |
| oven | 0.5442 | 0.7208 | 0.3123 | 0.4351 |
| shelf | 0.4040 | 0.6553 | 0.1128 | 0.2427 |
| toilet | 0.9060 | 0.9421 | 0.7215 | 0.7686 |
| dishwasher | 0.0807 | 0.8800 | 0.0588 | 0.6000 |
| bathtub | 0.9488 | 0.9490 | 0.8449 | 0.8776 |
| bed | 0.8647 | 0.9337 | 0.7556 | 0.8011 |
| stove | 0.1017 | 0.2143 | 0.0002 | 0.0102 |
| washer | 0.7505 | 0.8684 | 0.6139 | 0.7105 |
| fireplace | 0.6004 | 0.7593 | 0.1121 | 0.2963 |
| sink | 0.4609 | 0.5032 | 0.1506 | 0.2166 |
+--------------+---------+---------+---------+---------+
| Overall | 0.5434 | 0.7221 | 0.3486 | 0.4682 |
+--------------+---------+---------+---------+---------+
2024-08-25 11:44:37,214 - mmdet - INFO - Epoch(val) [5][1685] sofa_AP_0.25: 0.7555, chair_AP_0.25: 0.6758, table_AP_0.25: 0.6700, cabinet_AP_0.25: 0.5055, stool_AP_0.25: 0.1830, tv_monitor_AP_0.25: 0.0223, refrigerator_AP_0.25: 0.7631, oven_AP_0.25: 0.5442, shelf_AP_0.25: 0.4040, toilet_AP_0.25: 0.9060, dishwasher_AP_0.25: 0.0807, bathtub_AP_0.25: 0.9488, bed_AP_0.25: 0.8647, stove_AP_0.25: 0.1017, washer_AP_0.25: 0.7505, fireplace_AP_0.25: 0.6004, sink_AP_0.25: 0.4609, mAP_0.25: 0.5434, sofa_rec_0.25: 0.8451, chair_rec_0.25: 0.8450, table_rec_0.25: 0.8644, cabinet_rec_0.25: 0.6506, stool_rec_0.25: 0.5860, tv_monitor_rec_0.25: 0.1068, refrigerator_rec_0.25: 0.9512, oven_rec_0.25: 0.7208, shelf_rec_0.25: 0.6553, toilet_rec_0.25: 0.9421, dishwasher_rec_0.25: 0.8800, bathtub_rec_0.25: 0.9490, bed_rec_0.25: 0.9337, stove_rec_0.25: 0.2143, washer_rec_0.25: 0.8684, fireplace_rec_0.25: 0.7593, sink_rec_0.25: 0.5032, mAR_0.25: 0.7221, sofa_AP_0.50: 0.5960, chair_AP_0.50: 0.3618, table_AP_0.50: 0.3421, cabinet_AP_0.50: 0.2123, stool_AP_0.50: 0.0796, tv_monitor_AP_0.50: 0.0000, refrigerator_AP_0.50: 0.6519, oven_AP_0.50: 0.3123, shelf_AP_0.50: 0.1128, toilet_AP_0.50: 0.7215, dishwasher_AP_0.50: 0.0588, bathtub_AP_0.50: 0.8449, bed_AP_0.50: 0.7556, stove_AP_0.50: 0.0002, washer_AP_0.50: 0.6139, fireplace_AP_0.50: 0.1121, sink_AP_0.50: 0.1506, mAP_0.50: 0.3486, sofa_rec_0.50: 0.6640, chair_rec_0.50: 0.5088, table_rec_0.50: 0.5033, cabinet_rec_0.50: 0.3259, stool_rec_0.50: 0.2419, tv_monitor_rec_0.50: 0.0000, refrigerator_rec_0.50: 0.7561, oven_rec_0.50: 0.4351, shelf_rec_0.50: 0.2427, toilet_rec_0.50: 0.7686, dishwasher_rec_0.50: 0.6000, bathtub_rec_0.50: 0.8776, bed_rec_0.50: 0.8011, stove_rec_0.50: 0.0102, washer_rec_0.50: 0.7105, fireplace_rec_0.50: 0.2963, sink_rec_0.50: 0.2166, mAR_0.50: 0.4682
2024-08-25 11:47:13,179 - mmdet - INFO - Epoch [6][50/1685] lr: 1.000e-04, eta: 9:19:48, time: 3.119, data_time: 0.146, memory: 19416, loss_occ: 0.5315, acc_occ: 0.8752, loss_centerness: 0.6171, loss_bbox: 0.4371, loss_cls: 0.2594, loss: 1.8451, grad_norm: 3.2962
2024-08-25 11:49:41,994 - mmdet - INFO - Epoch [6][100/1685] lr: 1.000e-04, eta: 9:17:33, time: 2.976, data_time: 0.011, memory: 19416, loss_occ: 0.5500, acc_occ: 0.8742, loss_centerness: 0.6155, loss_bbox: 0.4461, loss_cls: 0.2618, loss: 1.8734, grad_norm: 3.6261
2024-08-25 11:52:07,824 - mmdet - INFO - Epoch [6][150/1685] lr: 1.000e-04, eta: 9:15:14, time: 2.917, data_time: 0.011, memory: 19416, loss_occ: 0.5544, acc_occ: 0.8774, loss_centerness: 0.6138, loss_bbox: 0.4406, loss_cls: 0.2608, loss: 1.8696, grad_norm: 3.8420
2024-08-25 11:54:28,416 - mmdet - INFO - Epoch [6][200/1685] lr: 1.000e-04, eta: 9:12:47, time: 2.812, data_time: 0.013, memory: 19416, loss_occ: 0.5585, acc_occ: 0.8710, loss_centerness: 0.6124, loss_bbox: 0.4427, loss_cls: 0.2660, loss: 1.8795, grad_norm: 3.8207
2024-08-25 11:56:48,301 - mmdet - INFO - Epoch [6][250/1685] lr: 1.000e-04, eta: 9:10:20, time: 2.798, data_time: 0.017, memory: 19416, loss_occ: 0.5566, acc_occ: 0.8775, loss_centerness: 0.6119, loss_bbox: 0.4327, loss_cls: 0.2475, loss: 1.8486, grad_norm: 3.6717
2024-08-25 11:59:09,120 - mmdet - INFO - Epoch [6][300/1685] lr: 1.000e-04, eta: 9:07:54, time: 2.816, data_time: 0.011, memory: 19416, loss_occ: 0.5416, acc_occ: 0.8734, loss_centerness: 0.6141, loss_bbox: 0.4363, loss_cls: 0.2549, loss: 1.8469, grad_norm: 3.8137
2024-08-25 12:01:31,297 - mmdet - INFO - Epoch [6][350/1685] lr: 1.000e-04, eta: 9:05:30, time: 2.844, data_time: 0.010, memory: 19416, loss_occ: 0.5499, acc_occ: 0.8773, loss_centerness: 0.6116, loss_bbox: 0.4351, loss_cls: 0.2612, loss: 1.8579, grad_norm: 3.7474
2024-08-25 12:03:51,449 - mmdet - INFO - Epoch [6][400/1685] lr: 1.000e-04, eta: 9:03:04, time: 2.803, data_time: 0.010, memory: 19416, loss_occ: 0.5413, acc_occ: 0.8766, loss_centerness: 0.6102, loss_bbox: 0.4362, loss_cls: 0.2667, loss: 1.8543, grad_norm: 3.6301
2024-08-25 12:06:18,027 - mmdet - INFO - Epoch [6][450/1685] lr: 1.000e-04, eta: 9:00:45, time: 2.932, data_time: 0.012, memory: 19416, loss_occ: 0.5585, acc_occ: 0.8741, loss_centerness: 0.6128, loss_bbox: 0.4410, loss_cls: 0.2608, loss: 1.8731, grad_norm: 3.8950
2024-08-25 12:08:45,681 - mmdet - INFO - Epoch [6][500/1685] lr: 1.000e-04, eta: 8:58:28, time: 2.953, data_time: 0.011, memory: 19416, loss_occ: 0.5408, acc_occ: 0.8836, loss_centerness: 0.6115, loss_bbox: 0.4351, loss_cls: 0.2508, loss: 1.8382, grad_norm: 3.6415
2024-08-25 12:11:14,620 - mmdet - INFO - Epoch [6][550/1685] lr: 1.000e-04, eta: 8:56:12, time: 2.979, data_time: 0.014, memory: 19416, loss_occ: 0.5483, acc_occ: 0.8710, loss_centerness: 0.6146, loss_bbox: 0.4416, loss_cls: 0.2530, loss: 1.8575, grad_norm: 3.8795
2024-08-25 12:13:45,038 - mmdet - INFO - Epoch [6][600/1685] lr: 1.000e-04, eta: 8:53:59, time: 3.008, data_time: 0.010, memory: 19416, loss_occ: 0.5485, acc_occ: 0.8748, loss_centerness: 0.6094, loss_bbox: 0.4384, loss_cls: 0.2516, loss: 1.8478, grad_norm: 3.5790
2024-08-25 12:16:14,589 - mmdet - INFO - Epoch [6][650/1685] lr: 1.000e-04, eta: 8:51:43, time: 2.991, data_time: 0.012, memory: 19416, loss_occ: 0.5489, acc_occ: 0.8786, loss_centerness: 0.6150, loss_bbox: 0.4359, loss_cls: 0.2549, loss: 1.8547, grad_norm: 4.0069
2024-08-25 12:18:44,628 - mmdet - INFO - Epoch [6][700/1685] lr: 1.000e-04, eta: 8:49:29, time: 3.001, data_time: 0.012, memory: 19416, loss_occ: 0.5440, acc_occ: 0.8753, loss_centerness: 0.6130, loss_bbox: 0.4349, loss_cls: 0.2491, loss: 1.8410, grad_norm: 3.5560
2024-08-25 12:21:13,969 - mmdet - INFO - Epoch [6][750/1685] lr: 1.000e-04, eta: 8:47:13, time: 2.987, data_time: 0.018, memory: 19416, loss_occ: 0.5532, acc_occ: 0.8759, loss_centerness: 0.6149, loss_bbox: 0.4341, loss_cls: 0.2568, loss: 1.8590, grad_norm: 3.8050
2024-08-25 12:23:43,566 - mmdet - INFO - Epoch [6][800/1685] lr: 1.000e-04, eta: 8:44:57, time: 2.992, data_time: 0.014, memory: 19416, loss_occ: 0.5419, acc_occ: 0.8753, loss_centerness: 0.6150, loss_bbox: 0.4427, loss_cls: 0.2925, loss: 1.8922, grad_norm: 4.1547
2024-08-25 12:26:11,577 - mmdet - INFO - Epoch [6][850/1685] lr: 1.000e-04, eta: 8:42:40, time: 2.960, data_time: 0.015, memory: 19416, loss_occ: 0.5517, acc_occ: 0.8821, loss_centerness: 0.6151, loss_bbox: 0.4383, loss_cls: 0.2667, loss: 1.8718, grad_norm: 3.6664
2024-08-25 12:28:38,031 - mmdet - INFO - Epoch [6][900/1685] lr: 1.000e-04, eta: 8:40:20, time: 2.929, data_time: 0.015, memory: 19416, loss_occ: 0.5275, acc_occ: 0.8795, loss_centerness: 0.6126, loss_bbox: 0.4333, loss_cls: 0.2554, loss: 1.8288, grad_norm: 3.7166
2024-08-25 12:31:03,944 - mmdet - INFO - Epoch [6][950/1685] lr: 1.000e-04, eta: 8:38:00, time: 2.918, data_time: 0.014, memory: 19416, loss_occ: 0.5324, acc_occ: 0.8771, loss_centerness: 0.6133, loss_bbox: 0.4387, loss_cls: 0.2637, loss: 1.8481, grad_norm: 3.6650
2024-08-25 12:33:29,091 - mmdet - INFO - Epoch [6][1000/1685] lr: 1.000e-04, eta: 8:35:39, time: 2.903, data_time: 0.014, memory: 19416, loss_occ: 0.5518, acc_occ: 0.8774, loss_centerness: 0.6131, loss_bbox: 0.4424, loss_cls: 0.2612, loss: 1.8685, grad_norm: 3.8777
2024-08-25 12:35:57,297 - mmdet - INFO - Epoch [6][1050/1685] lr: 1.000e-04, eta: 8:33:21, time: 2.964, data_time: 0.014, memory: 19416, loss_occ: 0.5355, acc_occ: 0.8779, loss_centerness: 0.6112, loss_bbox: 0.4297, loss_cls: 0.2525, loss: 1.8290, grad_norm: 3.6032
2024-08-25 12:38:27,043 - mmdet - INFO - Epoch [6][1100/1685] lr: 1.000e-04, eta: 8:31:05, time: 2.995, data_time: 0.017, memory: 19416, loss_occ: 0.5583, acc_occ: 0.8761, loss_centerness: 0.6135, loss_bbox: 0.4307, loss_cls: 0.2530, loss: 1.8556, grad_norm: 3.5956
2024-08-25 12:40:53,315 - mmdet - INFO - Epoch [6][1150/1685] lr: 1.000e-04, eta: 8:28:45, time: 2.925, data_time: 0.014, memory: 19416, loss_occ: 0.5410, acc_occ: 0.8784, loss_centerness: 0.6152, loss_bbox: 0.4388, loss_cls: 0.2594, loss: 1.8544, grad_norm: 3.5607
2024-08-25 12:43:20,363 - mmdet - INFO - Epoch [6][1200/1685] lr: 1.000e-04, eta: 8:26:25, time: 2.941, data_time: 0.017, memory: 19416, loss_occ: 0.5417, acc_occ: 0.8751, loss_centerness: 0.6145, loss_bbox: 0.4363, loss_cls: 0.2550, loss: 1.8475, grad_norm: 3.7290
2024-08-25 12:45:45,645 - mmdet - INFO - Epoch [6][1250/1685] lr: 1.000e-04, eta: 8:24:04, time: 2.906, data_time: 0.016, memory: 19416, loss_occ: 0.5372, acc_occ: 0.8789, loss_centerness: 0.6143, loss_bbox: 0.4368, loss_cls: 0.2598, loss: 1.8480, grad_norm: 3.7408
2024-08-25 12:48:13,967 - mmdet - INFO - Epoch [6][1300/1685] lr: 1.000e-04, eta: 8:21:46, time: 2.966, data_time: 0.015, memory: 19416, loss_occ: 0.5471, acc_occ: 0.8761, loss_centerness: 0.6133, loss_bbox: 0.4341, loss_cls: 0.2561, loss: 1.8506, grad_norm: 3.6970
2024-08-25 12:50:42,343 - mmdet - INFO - Epoch [6][1350/1685] lr: 1.000e-04, eta: 8:19:28, time: 2.968, data_time: 0.014, memory: 19416, loss_occ: 0.5373, acc_occ: 0.8700, loss_centerness: 0.6153, loss_bbox: 0.4375, loss_cls: 0.2567, loss: 1.8468, grad_norm: 3.7656
2024-08-25 12:53:08,234 - mmdet - INFO - Epoch [6][1400/1685] lr: 1.000e-04, eta: 8:17:07, time: 2.918, data_time: 0.014, memory: 19416, loss_occ: 0.5440, acc_occ: 0.8793, loss_centerness: 0.6124, loss_bbox: 0.4336, loss_cls: 0.2601, loss: 1.8501, grad_norm: 3.8494
2024-08-25 12:55:34,591 - mmdet - INFO - Epoch [6][1450/1685] lr: 1.000e-04, eta: 8:14:47, time: 2.927, data_time: 0.014, memory: 19416, loss_occ: 0.5307, acc_occ: 0.8791, loss_centerness: 0.6114, loss_bbox: 0.4308, loss_cls: 0.2462, loss: 1.8191, grad_norm: 3.5783
2024-08-25 12:58:02,737 - mmdet - INFO - Epoch [6][1500/1685] lr: 1.000e-04, eta: 8:12:28, time: 2.963, data_time: 0.014, memory: 19416, loss_occ: 0.5313, acc_occ: 0.8758, loss_centerness: 0.6129, loss_bbox: 0.4298, loss_cls: 0.2494, loss: 1.8234, grad_norm: 3.4281
2024-08-25 13:00:31,039 - mmdet - INFO - Epoch [6][1550/1685] lr: 1.000e-04, eta: 8:10:09, time: 2.966, data_time: 0.014, memory: 19416, loss_occ: 0.5308, acc_occ: 0.8769, loss_centerness: 0.6113, loss_bbox: 0.4302, loss_cls: 0.2585, loss: 1.8308, grad_norm: 3.5687
2024-08-25 13:02:58,250 - mmdet - INFO - Epoch [6][1600/1685] lr: 1.000e-04, eta: 8:07:50, time: 2.944, data_time: 0.015, memory: 19416, loss_occ: 0.5248, acc_occ: 0.8811, loss_centerness: 0.6124, loss_bbox: 0.4213, loss_cls: 0.2388, loss: 1.7973, grad_norm: 3.7680
2024-08-25 13:05:28,763 - mmdet - INFO - Epoch [6][1650/1685] lr: 1.000e-04, eta: 8:05:33, time: 3.010, data_time: 0.014, memory: 19416, loss_occ: 0.5414, acc_occ: 0.8801, loss_centerness: 0.6081, loss_bbox: 0.4335, loss_cls: 0.2507, loss: 1.8337, grad_norm: 3.7175
2024-08-25 13:07:07,766 - mmdet - INFO - Saving checkpoint at 6 epochs
2024-08-25 13:09:18,199 - mmdet - INFO -
+--------------+---------+---------+---------+---------+
| classes | AP_0.25 | AR_0.25 | AP_0.50 | AR_0.50 |
+--------------+---------+---------+---------+---------+
| sofa | 0.7638 | 0.8530 | 0.6014 | 0.6693 |
| chair | 0.6840 | 0.8462 | 0.4113 | 0.5550 |
| table | 0.6646 | 0.8611 | 0.3885 | 0.5212 |
| cabinet | 0.5329 | 0.6550 | 0.2541 | 0.3579 |
| stool | 0.2323 | 0.6022 | 0.0870 | 0.2366 |
| tv_monitor | 0.0070 | 0.0783 | 0.0000 | 0.0000 |
| oven | 0.6111 | 0.7403 | 0.3241 | 0.4351 |
| sink | 0.4764 | 0.5318 | 0.1710 | 0.2357 |
| shelf | 0.4346 | 0.6748 | 0.1148 | 0.2427 |
| toilet | 0.9107 | 0.9421 | 0.7456 | 0.7851 |
| dishwasher | 0.1364 | 0.8800 | 0.1139 | 0.6400 |
| refrigerator | 0.7823 | 0.9878 | 0.6640 | 0.7805 |
| bathtub | 0.9463 | 0.9592 | 0.7658 | 0.8367 |
| fireplace | 0.5740 | 0.7407 | 0.1323 | 0.2778 |
| washer | 0.7604 | 0.8947 | 0.6410 | 0.7368 |
| bed | 0.8670 | 0.9337 | 0.7530 | 0.8177 |
| stove | 0.1522 | 0.2245 | 0.0119 | 0.0408 |
+--------------+---------+---------+---------+---------+
| Overall | 0.5609 | 0.7297 | 0.3635 | 0.4805 |
+--------------+---------+---------+---------+---------+
2024-08-25 13:09:18,689 - mmdet - INFO - Epoch(val) [6][1685] sofa_AP_0.25: 0.7638, chair_AP_0.25: 0.6840, table_AP_0.25: 0.6646, cabinet_AP_0.25: 0.5329, stool_AP_0.25: 0.2323, tv_monitor_AP_0.25: 0.0070, oven_AP_0.25: 0.6111, sink_AP_0.25: 0.4764, shelf_AP_0.25: 0.4346, toilet_AP_0.25: 0.9107, dishwasher_AP_0.25: 0.1364, refrigerator_AP_0.25: 0.7823, bathtub_AP_0.25: 0.9463, fireplace_AP_0.25: 0.5740, washer_AP_0.25: 0.7604, bed_AP_0.25: 0.8670, stove_AP_0.25: 0.1522, mAP_0.25: 0.5609, sofa_rec_0.25: 0.8530, chair_rec_0.25: 0.8462, table_rec_0.25: 0.8611, cabinet_rec_0.25: 0.6550, stool_rec_0.25: 0.6022, tv_monitor_rec_0.25: 0.0783, oven_rec_0.25: 0.7403, sink_rec_0.25: 0.5318, shelf_rec_0.25: 0.6748, toilet_rec_0.25: 0.9421, dishwasher_rec_0.25: 0.8800, refrigerator_rec_0.25: 0.9878, bathtub_rec_0.25: 0.9592, fireplace_rec_0.25: 0.7407, washer_rec_0.25: 0.8947, bed_rec_0.25: 0.9337, stove_rec_0.25: 0.2245, mAR_0.25: 0.7297, sofa_AP_0.50: 0.6014, chair_AP_0.50: 0.4113, table_AP_0.50: 0.3885, cabinet_AP_0.50: 0.2541, stool_AP_0.50: 0.0870, tv_monitor_AP_0.50: 0.0000, oven_AP_0.50: 0.3241, sink_AP_0.50: 0.1710, shelf_AP_0.50: 0.1148, toilet_AP_0.50: 0.7456, dishwasher_AP_0.50: 0.1139, refrigerator_AP_0.50: 0.6640, bathtub_AP_0.50: 0.7658, fireplace_AP_0.50: 0.1323, washer_AP_0.50: 0.6410, bed_AP_0.50: 0.7530, stove_AP_0.50: 0.0119, mAP_0.50: 0.3635, sofa_rec_0.50: 0.6693, chair_rec_0.50: 0.5550, table_rec_0.50: 0.5212, cabinet_rec_0.50: 0.3579, stool_rec_0.50: 0.2366, tv_monitor_rec_0.50: 0.0000, oven_rec_0.50: 0.4351, sink_rec_0.50: 0.2357, shelf_rec_0.50: 0.2427, toilet_rec_0.50: 0.7851, dishwasher_rec_0.50: 0.6400, refrigerator_rec_0.50: 0.7805, bathtub_rec_0.50: 0.8367, fireplace_rec_0.50: 0.2778, washer_rec_0.50: 0.7368, bed_rec_0.50: 0.8177, stove_rec_0.50: 0.0408, mAR_0.50: 0.4805
2024-08-25 13:11:53,090 - mmdet - INFO - Epoch [7][50/1685] lr: 1.000e-04, eta: 8:00:00, time: 3.087, data_time: 0.143, memory: 19416, loss_occ: 0.5426, acc_occ: 0.8812, loss_centerness: 0.6091, loss_bbox: 0.4318, loss_cls: 0.2474, loss: 1.8310, grad_norm: 3.5595
2024-08-25 13:14:19,301 - mmdet - INFO - Epoch [7][100/1685] lr: 1.000e-04, eta: 7:57:40, time: 2.924, data_time: 0.010, memory: 19416, loss_occ: 0.5316, acc_occ: 0.8808, loss_centerness: 0.6145, loss_bbox: 0.4247, loss_cls: 0.2445, loss: 1.8153, grad_norm: 3.7076
2024-08-25 13:16:45,728 - mmdet - INFO - Epoch [7][150/1685] lr: 1.000e-04, eta: 7:55:20, time: 2.929, data_time: 0.011, memory: 19416, loss_occ: 0.5386, acc_occ: 0.8774, loss_centerness: 0.6115, loss_bbox: 0.4253, loss_cls: 0.2481, loss: 1.8235, grad_norm: 3.5225
2024-08-25 13:19:19,961 - mmdet - INFO - Epoch [7][200/1685] lr: 1.000e-04, eta: 7:53:07, time: 3.085, data_time: 0.010, memory: 19416, loss_occ: 0.5336, acc_occ: 0.8845, loss_centerness: 0.6100, loss_bbox: 0.4217, loss_cls: 0.2371, loss: 1.8024, grad_norm: 3.6797
2024-08-25 13:21:43,876 - mmdet - INFO - Epoch [7][250/1685] lr: 1.000e-04, eta: 7:50:45, time: 2.878, data_time: 0.011, memory: 19416, loss_occ: 0.5367, acc_occ: 0.8825, loss_centerness: 0.6130, loss_bbox: 0.4195, loss_cls: 0.2358, loss: 1.8050, grad_norm: 3.9129
2024-08-25 13:24:11,295 - mmdet - INFO - Epoch [7][300/1685] lr: 1.000e-04, eta: 7:48:25, time: 2.948, data_time: 0.014, memory: 19416, loss_occ: 0.5487, acc_occ: 0.8800, loss_centerness: 0.6116, loss_bbox: 0.4282, loss_cls: 0.2399, loss: 1.8284, grad_norm: 3.7194