-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
executable file
·123 lines (107 loc) · 4.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import os
import random
import pandas as pd
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def get_mask_dict(own_state, state_dict):
for name, param in state_dict.items():
if name not in own_state:
continue
if 'zeta' not in name and 'beta' not in name and 'gamma' not in name:
continue
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[name].copy_(param)
return own_state
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 2 every 30 epochs"""
if args.scheduler_type==1:
lr = args.lr * (0.5 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
if epoch in [args.epochs*0.5, args.epochs*0.75]:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
def plot_learning_curves(logger_name):
train_loss = []
val_loss = []
val_acc = []
df = pd.read_csv('logs/'+logger_name)
train_loss = df.iloc[1:,1]
val_loss = df.iloc[1:,2]
val_acc = df.iloc[1:,3]*100
plt.style.use('seaborn')
plt.plot(np.arange(len(train_loss)), train_loss, label = 'Training error')
plt.plot(np.arange(len(train_loss)), val_loss, label = 'Validation error')
plt.ylabel('Loss', fontsize = 14)
plt.xlabel('Epochs', fontsize = 14)
plt.title('Loss Curve', fontsize = 18, y = 1.03)
plt.legend()
plt.ylim(0,4)
plt.show()
print()
plt.style.use('seaborn')
plt.plot(np.arange(len(train_loss)), val_acc, label = 'Validation Accuracy')
plt.ylabel('Accuracy', fontsize = 14)
plt.xlabel('Epochs', fontsize = 14)
plt.title('Accuracy curve', fontsize = 18, y = 1.03)
plt.legend()
plt.ylim(0,100)
plt.show()
print()
def visualize_model_architecture(model, budget, budget_type):
pruned_model = [3,]
full_model = [3,]
device = torch.device('cpu')
model.to(device)
model(torch.rand(1,3,32,32))
model.prepare_for_finetuning(device=device,budget=budget,budget_type=budget_type)
for l_block in model.prunable_modules:
gates = l_block.pruned_zeta.cpu().detach().numpy().tolist()
full_model.append(len(gates))
pruned_model.append(np.sum(gates))
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
full_model = np.array(full_model)
pruned_model = np.array(pruned_model)
ax.bar(np.arange(len(full_model)), full_model, width = 0.5, color = 'b')
ax.bar(np.arange(len(pruned_model)), pruned_model, width = 0.5, color = 'r')
print(full_model)
print(pruned_model)
plt.show()
if hasattr(model, 'calc_params') and budget_type!='parameter_ratio':
total_params = model.calc_params(full_model)
active_params = model.calc_params(pruned_model)
else:
active_params, total_params = model.get_params_count()
if hasattr(model, 'calc_flops') and budget_type!='flops_ratio':
total_flops = model.calc_flops(full_model)
active_flops = model.calc_flops(pruned_model)
else:
active_flops, total_flops = model.get_flops()
active_volume, total_volume = model.get_volume()
active_channels, total_channels = model.get_channels()
print(f'\nTotal parameter count: {total_params}')
print(f'Remaining parameter count: {active_params}')
print(f'Remaining Parameter Fraction: {active_params/total_params}')
print(f'\nTotal volume count: {total_volume}')
print(f'Remaining volume count: {active_volume}')
print(f'Remaining volume Fraction: {active_volume/total_volume}')
print(f'\nTotal flops count: {total_flops}')
print(f'Remaining flops count: {active_flops}')
print(f'Remaining flops Fraction: {active_flops/total_flops}')
print(f'\nTotal channels count: {total_channels}')
print(f'Remaining channels count: {active_channels}')
print(f'Remaining channels Fraction: {active_channels/total_channels}')
return [full_model, pruned_model]