-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfinetuning.py
150 lines (131 loc) · 5.94 KB
/
finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import os
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm as tqdm_notebook
from datasets import DataManager
from utils import *
from models import get_model
seed_everything(43)
ap = argparse.ArgumentParser(description='finetuning')
ap.add_argument('dataset', choices=['c10', 'c100', 'tin','svhn'], type=str, help='Dataset choice')
ap.add_argument('model', type=str, help='Model choice')
ap.add_argument('--budget_type', choices=['channel_ratio', 'volume_ratio','parameter_ratio','flops_ratio'], default = 'channel_ratio', type=str, help='Budget Type')
ap.add_argument('--Vc', default=0.5, type=float, help='Budget Constraint')
ap.add_argument('--batch_size', default=128, type=int, help='Batch Size')
ap.add_argument('--epochs', default=300, type=int, help='Epochs')
ap.add_argument('--name', type=str, help='name of model')
ap.add_argument('--host_name',default = None, type=str, help='transfer the mask from this model')
ap.add_argument('--valid_size', '-v', type=float, default=0.1, help='valid_size')
ap.add_argument('--lr', default=0.05, type=float, help='Learning rate')
ap.add_argument('--scheduler_type', '-st', type=int, choices=[1, 2], default=1, help='lr scheduler type')
ap.add_argument('--decay', '-d', type=float, default=0.001, help='weight decay')
ap.add_argument('--test_only', '-t', type=bool, default=False, help='test the best model')
ap.add_argument('--workers', default=0, type=int, help='number of workers')
ap.add_argument('--cuda_id', '-id', type=str, default='0', help='gpu number')
args = ap.parse_args()
valid_size=args.valid_size
Vc = torch.FloatTensor([args.Vc])
if args.host_name == None:
model_path = f"checkpoints/{args.name}_pruned.pth"
else:
# model_path = f"checkpoints/{args.name}_pretrained.pth"
model_path = f"checkpoints/{args.host_name}_pruned.pth"
############################### preparing dataset ################################
data_object = DataManager(args)
trainloader, valloader, testloader = data_object.prepare_data()
dataloaders = {
'train': trainloader, 'val': valloader, "test": testloader
}
############################### preparing model ###################################
model = get_model(args.model, 'prune', data_object.num_classes, data_object.insize)
if args.host_name is not None:
host_state = torch.load(model_path)['state_dict']
model.load_state_dict(get_mask_dict(model.state_dict(), host_state), strict = False)
else:
state = torch.load(model_path)['state_dict']
model.load_state_dict(state, strict=False)
CE = nn.CrossEntropyLoss()
def criterion(model, y_pred, y_true):
ce_loss = CE(y_pred, y_true)
return ce_loss
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.decay)
device = torch.device(f"cuda:{str(args.cuda_id)}")
model.to(device)
Vc.to(device)
def train(model, loss_fn, optimizer):
model.train()
counter = 0
tk1 = tqdm_notebook(dataloaders['train'], total=len(dataloaders['train']))
running_loss = 0.
for x_var, y_var in tk1:
counter +=1
x_var = x_var.to(device=device)
y_var = y_var.to(device=device)
scores = model(x_var)
loss = loss_fn(model, scores, y_var)
running_loss+=loss.item()
tk1.set_postfix(loss=running_loss/counter)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return running_loss/counter
def test(model, loss_fn, optimizer, phase):
model.eval()
counter = 0
tk1 = tqdm_notebook(dataloaders[phase], total=len(dataloaders[phase]))
running_loss = 0
running_acc = 0
total = 0
with torch.no_grad():
for x_var, y_var in tk1:
counter +=1
x_var = x_var.to(device=device)
y_var = y_var.to(device=device)
scores = model(x_var)
loss = loss_fn(model, scores, y_var)
_, scores = torch.max(scores.data, 1)
y_var = y_var.cpu().detach().numpy()
scores = scores.cpu().detach().numpy()
correct = (scores == y_var).sum().item()
running_loss+=loss.item()
running_acc+=correct
total+=scores.shape[0]
tk1.set_postfix(loss=running_loss/counter, acc=running_acc/total)
return running_acc/total, running_loss/counter
############################## training starts here #############################
model.prepare_for_finetuning(device, Vc.item(), budget_type=args.budget_type) # sets beta and gamma and unfreezes network except zetas
best_accuracy=0
num_epochs = args.epochs
train_losses = []
valid_losses = []
valid_accuracy = []
if args.test_only == False:
for epoch in range(num_epochs):
adjust_learning_rate(optimizer, epoch, args)
print('Starting epoch %d / %d' % (epoch + 1, num_epochs))
train_loss = train(model, criterion, optimizer)
accuracy, valid_loss = test(model, criterion, optimizer, "val")
remaining = model.get_remaining(20.,args.budget_type).item()
if accuracy>best_accuracy:
print("**Saving model**")
best_accuracy=accuracy
torch.save({
"epoch": epoch + 1,
"state_dict" : model.state_dict(),
"acc" : best_accuracy,
"rem" : remaining,
}, f"checkpoints/{args.name}_{args.dataset}_finetuned.pth")
train_losses.append(train_loss)
valid_losses.append(valid_loss)
valid_accuracy.append(accuracy)
df_data=np.array([train_losses, valid_losses, valid_accuracy]).T
df = pd.DataFrame(df_data,columns = ['train_losses','valid_losses','valid_accuracy'])
df.to_csv(f"logs/{args.name}_{args.dataset}_finetuned.csv")
state = torch.load(f"checkpoints/{args.name}_{args.dataset}_finetuned.pth")
model.load_state_dict(state['state_dict'],strict=True)
acc, v_loss = test(model, criterion, optimizer, "test")
print(f"Test Accuracy: {acc} | Valid Accuracy: {state['acc']}")