From 802b4232c4784b6d569811c167e841293c87d8cc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E3=81=B4=E3=81=AA?= <62735650+Kaki256@users.noreply.github.com> Date: Thu, 2 May 2024 17:17:02 +0900 Subject: [PATCH] =?UTF-8?q?=E5=BA=8A=E9=96=A2=E6=95=B0=E3=81=8C=E7=B5=B6?= =?UTF-8?q?=E5=AF=BE=E5=80=A4=E9=96=A2=E6=95=B0=E3=81=AE=E8=A1=A8=E7=A4=BA?= =?UTF-8?q?=E3=81=AB=E3=81=AA=E3=81=A3=E3=81=A6=E3=81=84=E3=82=8B=E3=81=AE?= =?UTF-8?q?=E3=82=92=E4=BF=AE=E6=AD=A3=20(#21)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/text/chapter-2/practice/4bit.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/text/chapter-2/practice/4bit.md b/docs/text/chapter-2/practice/4bit.md index f9861c4..45a54a8 100644 --- a/docs/text/chapter-2/practice/4bit.md +++ b/docs/text/chapter-2/practice/4bit.md @@ -17,7 +17,7 @@ int型では、`5 / 3`は`1`になる。 ::: :::spoiler Hint 4 -$|\displaystyle \frac{n}{2^k}|$を2進数表記すると、$n$の2進数表記の$k+1$桁目以上を得ることができる。 +$\displaystyle\left\lfloor\frac{n}{2^k}\right\rfloor$を2進数表記すると、$n$の2進数表記の$k+1$桁目以上を得ることができる。 ::: :::spoiler Answer