forked from svip-lab/impersonator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
140 lines (109 loc) · 5.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import time
from options.train_options import TrainOptions
from data.custom_dataset_data_loader import CustomDatasetDataLoader
from models.models import ModelsFactory
from utils.tb_visualizer import TBVisualizer
from collections import OrderedDict
class Train(object):
def __init__(self):
self._opt = TrainOptions().parse()
data_loader_train = CustomDatasetDataLoader(self._opt, is_for_train=True)
data_loader_test = CustomDatasetDataLoader(self._opt, is_for_train=False)
self._dataset_train = data_loader_train.load_data()
self._dataset_test = data_loader_test.load_data()
self._dataset_train_size = len(data_loader_train)
self._dataset_test_size = len(data_loader_test)
print('#train video clips = %d' % self._dataset_train_size)
print('#test video clips = %d' % self._dataset_test_size)
self._model = ModelsFactory.get_by_name(self._opt.model, self._opt)
self._tb_visualizer = TBVisualizer(self._opt)
self._train()
def _train(self):
self._total_steps = self._opt.load_epoch * self._dataset_train_size
self._iters_per_epoch = self._dataset_train_size / self._opt.batch_size
self._last_display_time = None
self._last_save_latest_time = None
self._last_print_time = time.time()
for i_epoch in range(self._opt.load_epoch + 1, self._opt.nepochs_no_decay + self._opt.nepochs_decay + 1):
epoch_start_time = time.time()
# train epoch
self._train_epoch(i_epoch)
# save model
print('saving the model at the end of epoch %d, iters %d' % (i_epoch, self._total_steps))
self._model.save(i_epoch)
# print epoch info
time_epoch = time.time() - epoch_start_time
print('End of epoch %d / %d \t Time Taken: %d sec (%d min or %d h)' %
(i_epoch, self._opt.nepochs_no_decay + self._opt.nepochs_decay, time_epoch,
time_epoch / 60, time_epoch / 3600))
# update learning rate
if i_epoch > self._opt.nepochs_no_decay:
self._model.update_learning_rate()
def _train_epoch(self, i_epoch):
epoch_iter = 0
self._model.set_train()
for i_train_batch, train_batch in enumerate(self._dataset_train):
iter_start_time = time.time()
# display flags
do_visuals = self._last_display_time is None or time.time() - self._last_display_time > self._opt.display_freq_s
do_print_terminal = time.time() - self._last_print_time > self._opt.print_freq_s or do_visuals
# train model
self._model.set_input(train_batch)
trainable = ((i_train_batch+1) % self._opt.train_G_every_n_iterations == 0) or do_visuals
self._model.optimize_parameters(keep_data_for_visuals=do_visuals, trainable=trainable)
# update epoch info
self._total_steps += self._opt.batch_size
epoch_iter += self._opt.batch_size
# display terminal
if do_print_terminal:
self._display_terminal(iter_start_time, i_epoch, i_train_batch, do_visuals)
self._last_print_time = time.time()
# display visualizer
if do_visuals:
self._display_visualizer_train(self._total_steps)
self._display_visualizer_val(i_epoch, self._total_steps)
self._last_display_time = time.time()
# save model
if self._last_save_latest_time is None or time.time() - self._last_save_latest_time > self._opt.save_latest_freq_s:
print('saving the latest model (epoch %d, total_steps %d)' % (i_epoch, self._total_steps))
self._model.save(i_epoch)
self._last_save_latest_time = time.time()
def _display_terminal(self, iter_start_time, i_epoch, i_train_batch, visuals_flag):
errors = self._model.get_current_errors()
t = (time.time() - iter_start_time) / self._opt.batch_size
self._tb_visualizer.print_current_train_errors(i_epoch, i_train_batch, self._iters_per_epoch, errors, t, visuals_flag)
def _display_visualizer_train(self, total_steps):
self._tb_visualizer.display_current_results(self._model.get_current_visuals(), total_steps, is_train=True)
self._tb_visualizer.plot_scalars(self._model.get_current_errors(), total_steps, is_train=True)
self._tb_visualizer.plot_scalars(self._model.get_current_scalars(), total_steps, is_train=True)
def _display_visualizer_val(self, i_epoch, total_steps):
val_start_time = time.time()
# set model to eval
self._model.set_eval()
# evaluate self._opt.num_iters_validate epochs
val_errors = OrderedDict()
for i_val_batch, val_batch in enumerate(self._dataset_test):
if i_val_batch == self._opt.num_iters_validate:
break
# evaluate model
self._model.set_input(val_batch)
self._model.forward(keep_data_for_visuals=(i_val_batch == 0))
errors = self._model.get_current_errors()
# store current batch errors
for k, v in errors.items():
if k in val_errors:
val_errors[k] += v
else:
val_errors[k] = v
# normalize errors
for k in val_errors:
val_errors[k] /= self._opt.num_iters_validate
# visualize
t = (time.time() - val_start_time)
self._tb_visualizer.print_current_validate_errors(i_epoch, val_errors, t)
self._tb_visualizer.plot_scalars(val_errors, total_steps, is_train=False)
self._tb_visualizer.display_current_results(self._model.get_current_visuals(), total_steps, is_train=False)
# set model back to train
self._model.set_train()
if __name__ == "__main__":
Train()