forked from svip-lab/impersonator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
147 lines (121 loc) · 5.52 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import torch
import numpy as np
from typing import Dict, Any, List
# evaluations
from his_evaluators import MotionImitationModel, IPERMotionImitationEvaluator
from models.imitator import Imitator
from options.test_options import TestOptions
from utils.visdom_visualizer import VisdomVisualizer
from run_imitator import adaptive_personalize
from utils import cv_utils
class LWGEvaluatorModel(MotionImitationModel):
def __init__(self, opt, output_dir):
super().__init__(output_dir)
self.opt = opt
if self.opt.ip:
visualizer = VisdomVisualizer(env=self.opt.name, ip=self.opt.ip, port=self.opt.port)
else:
visualizer = None
self.visualizer = visualizer
self.model = None
def imitate(self, src_infos: Dict[str, Any], ref_infos: Dict[str, Any]) -> List[str]:
"""
Running the motion imitation of the self.model, based on the source information with respect to the
provided reference information. It returns the full paths of synthesized images.
Args:
src_infos (dict): the source information contains:
--images (list of str): the list of full paths of source images (the length is 1)
--smpls (np.ndarray): (length of images, 85)
--kps (np.ndarray): (length of images, 19, 2)
ref_infos (dict): the reference information contains:
--images (list of str): the list of full paths of reference images.
--smpls (np.ndarray): (length of images, 85)
--kps (np.ndarray): (length of images, 19, 2)
--self_imitation (bool): the flag indicates whether it is self-imitation or not.
Returns:
preds_files (list of str): full paths of synthesized images with respects to the images in ref_infos.
"""
tgt_paths = ref_infos["images"]
tgt_smpls = np.copy(ref_infos["smpls"])
self_imitation = ref_infos["self_imitation"]
if self_imitation:
cam_strategy = "copy"
out_dir = self.si_out_dir
count = self.num_preds_si
self.num_preds_si += len(tgt_paths)
else:
cam_strategy = "smooth"
out_dir = self.ci_out_dir
count = self.num_preds_ci
self.num_preds_ci += len(tgt_paths)
# outputs = self.model.inference(tgt_paths, tgt_smpls=tgt_smpls, cam_strategy=cam_strategy,
# visualizer=None, verbose=True)
#
# all_preds_files = []
# for i, preds in enumerate(outputs):
# filename = "{:0>8}.jpg".format(count)
# pred_file = os.path.join(out_dir, 'pred_' + filename)
# count += 1
#
# cv_utils.save_cv2_img(preds, pred_file, normalize=True)
# all_preds_files.append(pred_file)
all_preds_files = []
for i in range(len(tgt_smpls)):
filename = "{:0>8}.jpg".format(count)
pred_file = os.path.join(out_dir, 'pred_' + filename)
count += 1
all_preds_files.append(pred_file)
return all_preds_files
def build_model(self):
"""
You must define your model in this function, including define the graph and allocate GPU.
This function will be called in @see `MotionImitationRunnerProcessor.run()`.
Returns:
None
"""
# set imitator
self.model = Imitator(self.opt)
def personalization(self, src_infos):
"""
some task/method specific data pre-processing or others.
Args:
src_infos (dict): the source information contains:
--images (list of str): the list of full paths of source images (the length is 1)
--smpls (np.ndarray): (length of images, 85)
--kps (np.ndarray): (length of images, 19, 2)
Returns:
processed_src_infos (dict): the source information contains:
--images (list of str): the list of full paths of source images (the length is 1)
--smpls (np.ndarray): (length of images, 85)
--kps (np.ndarray): (length of images, 19, 2)
...
"""
# 1. load the pretrain model
self.model._load_params(self.model.generator, self.opt.load_path)
self.opt.src_path = src_infos["images"][0]
# 2. post personalization
if self.opt.post_tune:
adaptive_personalize(self.opt, self.model, self.visualizer)
self.model.personalize(self.opt.src_path, src_smpl=np.copy(src_infos["smpls"][0]), visualizer=None)
processed_src_infos = src_infos
return processed_src_infos
def terminate(self):
"""
Close the model session, like if the model is based on TensorFlow, it needs to call sess.close() to
dealloc the resources.
Returns:
"""
pass
if __name__ == "__main__":
opt = TestOptions().parse()
model = LWGEvaluatorModel(opt, output_dir=opt.output_dir)
# iPER_MI_evaluator = IPERMotionImitationEvaluator(dataset="iPER", data_dir=opt.data_dir)
iPER_MI_evaluator = IPERMotionImitationEvaluator(dataset="iPER_ICCV", data_dir=opt.data_dir)
iPER_MI_evaluator.evaluate(
model=model,
image_size=opt.image_size,
pair_types=("ssim", "psnr", "lps", "face-CS", "OS-CS-reid"),
unpair_types=("is", "fid", "OS-CS-reid", "OS-freid", "face-CS", "face-FD", "PCB-CS-reid", "PCB-freid"),
device=torch.device("cuda:0")
)