-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path21921_Kjusjur_70-41N_127-24E.Rmd
298 lines (276 loc) · 10.7 KB
/
21921_Kjusjur_70-41N_127-24E.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
title: "21921_Kjusjur_70-41N_127-24E"
output:
html_notebook: default
html_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r require, include=FALSE}
#output: html_document
require(zoo);require(grnn);require(grt);require(lubridate);require(foreach);require(openxlsx); require(imputeTS)
Sys.setenv(R_ZIPCMD = paste0("C:/Users/IVA/Dropbox/Apps", "/bin/zip.exe")) ## path to zip.exe
#
```
##
:
```{r utils, echo=FALSE}
is.leapyear=function(year){
return(((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0))
}
setZeroNegativeNumber <- function(n){
if(n < 0) return(0)
else return(n)
}
as.zero.negative <- function(vec){
return(sapply(vec, setZeroNegativeNumber))
}
select.year <- function(years, num){
year <- years[years$Year == num, ]
return(year)
}
select.year.prec <- function(years, num){
year <- select.year(years, num)
year.prec <- year$PRECIP
return(year.prec)
}
select.year.temp <- function(years, num){
year <- select.year(years, num)
year.temp <- year$TMEAN
return(year.temp)
}
```
#### Reading file with climatic data in the format of the site aisori.
Convert and burn in my form of CVS
My file name format-write station code and name, and then write its coordinates
```{r read_table.aisori}
file.cli.path <- "/home/larisa/Dropbox/Apps/na_grnn_year/cli/21921_Kjusjur_70-41N_127-24E"
file.cli.path <- "C:/Users/IVA/Dropbox/Apps/na_grnn_year/cli/21921_Kjusjur_70-41N_127-24E"
file.name <- "/21921_Kyusyur.1909-2015.aisori.csv"
```
####
```{r read_iva}
file.cli.path <- "/home/larisa/Dropbox/Apps/na_grnn_year/cli/21921_Kjusjur_70-41N_127-24E"
file.cli.path <- "C:/Users/IVA/Dropbox/Apps/na_grnn_year/cli/21921_Kjusjur_70-41N_127-24E"
file.name <- "/21921_Kyusyur.1909-2015.aisori.csv"
df.cli.site <- read.csv(paste0(file.cli.path, file.name), header = TRUE, sep = ";", dec = ",") # read Climate
str(df.cli.site)
summary(df.cli.site)
plot(df.cli.site[, c(6)], col="gray")
plot(df.cli.site[, c(8)], col="gray")
```
#### Number of gaps in the data by year
In tabicu output only years with nonzero passes. The second column precipitation third temperature
```{r plot_NA}
vec.years <- unique(df.cli.site$Year)
site.prec.na <- 1:length(vec.years); site.temp.na <- 1:length(vec.years); k <- 1
for (i in vec.years){
names.vec <- c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.", "NA's")
site.prec.na[k] <- sum(is.na(select.year.prec(df.cli.site, i)))
site.temp.na[k] <- sum(is.na(select.year.temp(df.cli.site, i)))
if(site.prec.na[k] != 0 | site.temp.na[k] != 0){
cat(i, site.prec.na[k], site.temp.na[k], "\n")
}
k <- k + 1
}
# http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
# http://www.sthda.com/english/wiki/ggplot2-scatter-plots-quick-start-guide-r-software-and-data-visualization
#http://www.sthda.com/english/wiki/ggplot2-barplots-quick-start-guide-r-software-and-data-visualization
#http://tiramisutes.github.io/2015/09/21/line-ggplots.html
require(ggplot2)
plot.prec.na <- data.frame(years=vec.years, prec=site.prec.na)
ggplot(plot.prec.na, aes(x=years, y=prec)) +
geom_point(color="steelblue", size=3) + geom_rug() + # color="red", size=3 #E69F00
#theme_minimal() + #theme_classic()
labs(title="plot.prec.na") +
scale_color_brewer(palette="Paired") + theme_minimal()
# scale_color_manual(values=c('#999999','#E69F00'))
plot.temp.na <- data.frame(years=vec.years, temp=site.temp.na)
ggplot(plot.temp.na, aes(x=years, y=temp)) +
geom_point(color="#b47846", size=3) + geom_rug() + # color="red", size=3 #E69F00
#theme_minimal() + #theme_classic() # #4682b4
labs(title="plot.temp.na") +
scale_color_brewer(palette="Paired") + theme_minimal()
# scale_color_manual(values=c('#999999','#E69F00'))
```
#### Print a list of years where the number of missing data is greater than 100. Separately for temperature and precipitation
```{r print_year_na}
plot.prec.na[which(plot.prec.na$prec>100),]
plot.temp.na[which(plot.temp.na$temp>100),]
```
####
```{r impute_prec}
df.cli.site.period <- df.cli.site[df.cli.site$Year > 1935, ]
summary(df.cli.site.period[, c(6, 8)])
grnn.prec <- function(year.filled, R, K){
if (is.leapyear(year.filled)) {
sum.prec <- rep.int(0, 366)
} else {
sum.prec <- rep.int(0, 365) }
cat("Length ", year.filled, "year= ", length(sum.prec), "\n")
#
#
for (i in min(df.cli.site.period$Year):max(df.cli.site.period$Year)){
#cat("The current leap year ", i, is.leapyear(i), "\n")
if (!is.leapyear(i) & is.leapyear(year.filled)){
#cat("Plus one element\n")
prec.now <- c(select.year.prec(df.cli.site.period, i), 0.)
} else if (is.leapyear(i) & !is.leapyear(year.filled)){
#cat("Minus one element\n")
prec.now <- select.year.prec(df.cli.site.period, i)[1:365]
} else {
#cat("Select all origin elements\n")
prec.now <- select.year.prec(df.cli.site.period, i)
}
for(k in 1:length(sum.prec)){
if (!is.na(prec.now [k])){
if (prec.now [k] < 4.) {
sum.prec[k] <- (sum.prec[k] + prec.now[k]) / R
} else if (prec.now [k] > 11.){
#cat(" prec.now [k] > 20. \n")
sum.prec[k] <- sum.prec[k] + prec.now[k] + runif(1, 7, 23)
} else {
sum.prec[k] <- (sum.prec[k] + prec.now[k]) / runif(1, 1, K)
}
}
}
}
return(sum.prec)
}
grnn.prec.1974 <- grnn.prec(1974, 2, 1.7)
plot(grnn.prec.1974)
grnn.prec.2000 <- grnn.prec(2000, 4, 1.5)
plot(grnn.prec.2000)
grnn.prec.2001 <- grnn.prec(2001, 7, 1.9)
plot(grnn.prec.2001)
grnn.prec.2002 <- grnn.prec(2002, 5, 2.1)
plot(grnn.prec.2002)
#df.cli.site.period[df.cli.site.period$Year==2000, 8] <- sum.prec
```
####
```{r impute_temp}
#df.cli.site.period <- df.cli.site[df.cli.site$Year > 1935, ]
summary(df.cli.site.period[, c(6, 8)])
grnn.temp <- function(year.filled, R, K){
if (is.leapyear(year.filled)) {
sum.temp <- rep.int(0, 366)
} else {
sum.temp <- rep.int(0, 365) }
cat("Length ", year.filled, "year= ", length(sum.temp), "\n")
#
#
for (i in min(df.cli.site.period$Year):max(df.cli.site.period$Year)){
#cat("The current leap year ", i, is.leapyear(i), "\n")
if (!is.leapyear(i) & is.leapyear(year.filled)){
#cat("Plus one element\n")
temp.now <- c(select.year.temp(df.cli.site.period, i), 0.)
} else if (is.leapyear(i) & !is.leapyear(year.filled)){
#cat("Minus one element\n")
temp.now <- select.year.temp(df.cli.site.period, i)[1:365]
} else {
#cat("Select all origin elements\n")
temp.now <- select.year.temp(df.cli.site.period, i)
}
for(k in 1:length(sum.temp)){
if (!is.na(temp.now [k])){
sum.temp[k] <- (sum.temp[k] + temp.now[k]) / runif(1, 1.8, K)
}
}
}
return(sum.temp)
}
grnn.temp.1974 <- grnn.temp(1974, 2, 2.2)
plot(grnn.temp.1974)
grnn.temp.2000 <- grnn.temp(2000, 2, 2.2)
plot(grnn.temp.2000)
grnn.temp.2001 <- grnn.temp(2001, 2, 2.2)
plot(grnn.temp.2001)
grnn.temp.2002 <- grnn.temp(2002, 2, 2.2)
plot(grnn.temp.2002)
```
####
```{r insert_new_vectors}
plot(df.cli.site.period$PRECIP)
df.cli.site.period[df.cli.site.period$Year==1974, 8] <- grnn.prec.1974
df.cli.site.period[df.cli.site.period$Year==2000, 8] <- grnn.prec.2000
df.cli.site.period[df.cli.site.period$Year==2001, 8] <- grnn.prec.2001
df.cli.site.period[df.cli.site.period$Year==2002, 8] <- grnn.prec.2002
df.cli.site.period[df.cli.site.period$Year==1974, 6] <- grnn.temp.1974
df.cli.site.period[df.cli.site.period$Year==2000, 6] <- grnn.temp.2000
df.cli.site.period[df.cli.site.period$Year==2001, 6] <- grnn.temp.2001
df.cli.site.period[df.cli.site.period$Year==2002, 6] <- grnn.temp.2002
plot(df.cli.site.period$PRECIP)
summary(df.cli.site.period$PRECIP)
plot(df.cli.site.period$TMEAN)
summary(df.cli.site.period$TMEAN)
```
#### add random noise specified size and character
```{r add_random_noise}
cat("\n")
```
#### remove from filled (according to the average of all years) year simple feature a number of observations. This will give the grnn function additive smoothing regression.
```{r use_simple}
cat("\n")
```
####
```{r print_summary_all_sites}
#plot.min.max.all <-
for(i in min(df.cli.site.period$Year):max(df.cli.site.period$Year)){
print(summary(df.cli.site.period[df.cli.site.period$Year==i,c(2,6,8)]))
}
```
####
```{r filled_Kjusjur_prec}
#df.cli.site.period <- df.cli.site[df.cli.site$Year > 1935, ]
summary(df.cli.site.period[,c(6,8)])
df.cli.site.prec <- df.cli.site.period$PRECIP
plot(df.cli.site.prec , col="green")
plot(df.cli.site.prec , col="blue")
cli.site.prec.na <- which(is.na(df.cli.site.prec)) # index in vector
# http://stackoverflow.com/questions/18695335/replacing-all-nas-with-smoothing-spline
# https://www.r-bloggers.com/imputing-missing-data-with-r-mice-package/
# https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf
cli.site.prec.zoo <- as.zero.negative(zoo::na.spline(df.cli.site.prec))
cli.site.prec.kalman <- as.zero.negative(imputeTS::na.kalman(df.cli.site.prec))
summary(cli.site.prec.zoo)
summary(cli.site.prec.kalman)
for(i in 1:length(cli.site.prec.na)){
points(cli.site.prec.na[i], cli.site.prec.zoo[cli.site.prec.na[i]], col="red", pch=19)
}
for(i in 1:length(cli.site.prec.na)){
points(cli.site.prec.na[i], cli.site.prec.kalman[cli.site.prec.na[i]], col="green", pch=19)
}
```
```{r filled_Kjusjur_temp}
cli.site.temp <- df.cli.site.period$TMEAN
plot(cli.site.temp, col="blue")
cli.site.temp.na <- which(is.na(cli.site.temp))
cli.site.temp.zoo <- zoo::na.spline(cli.site.temp)
cli.site.temp.kalman <- imputeTS::na.kalman(cli.site.temp)
summary(cli.site.temp.zoo)
summary(cli.site.temp.kalman)
for(i in 1:length(cli.site.temp.na)){
points(cli.site.temp.na[i], cli.site.temp.zoo[cli.site.temp.na[i]], col="red", pch=19)
}
for(i in 1:length(cli.site.temp.na)){
points(cli.site.temp.na[i], cli.site.temp.kalman[cli.site.temp.na[i]], col="green", pch=19)
}
```
####
```{r create_new_data_cli}
require(openxlsx)
Sys.setenv(R_ZIPCMD = paste0("C:/Users/IVA/Dropbox/Apps", "/bin/zip.exe")) ## path to zip.exe
file.cli.path <- "C:/Users/IVA/Dropbox/Apps/na_grnn_year/cli/21921_Kjusjur_70-41N_127-24E"
file.name <- "/21921_Kyusyur.1909-2015.aisori.xlsx"
Kyusyur <- data.frame(
df.cli.site.period[, c(1,2,3,4), ],
Temp = round(cli.site.temp.kalman, 2),
Prec = round(cli.site.prec.kalman, 2)
)
summary(Kyusyur)
openxlsx::write.xlsx(
Kyusyur,
file = paste0(file.cli.path, file.name))
```
Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.