-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathexport_keras_to_tensorflow_serving.py
59 lines (43 loc) · 1.75 KB
/
export_keras_to_tensorflow_serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
'''
Derived from comment here - https://github.com/tensorflow/serving/issues/310#issuecomment-297015251
'''
import keras.backend as K
from keras.models import Model
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import utils
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import build_signature_def, predict_signature_def
from tensorflow.contrib.session_bundle import exporter
K.set_learning_phase(0)
'''
Start Editing file here
'''
# Create new model here and load its weights!
model = None
model.load_weights('')
# Edit the export folder path here !
export_path = ''
'''
No need to edit anything more from here on out
'''
new_model = Model.from_config(model.get_config())
new_model.set_weights(model.get_weights())
builder = saved_model_builder.SavedModelBuilder(export_path)
signature = predict_signature_def(inputs={'images': model.input},
outputs={'scores': model.output})
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map={'predict': signature})
builder.save()
'''
Client side code:
>>> request = predict_pb2.PredictRequest()
>>> request.model_spec.name = '' # <--- update model name here
>>> request.model_spec.signature_name = 'predict'
>>> request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto(img))
>>> result = stub.Predict(request, 10.0) # 10 secs timeout
>>> to_decode = np.expand_dims(result.outputs['outputs'].float_val, axis=0)
>>> decoded = decode_predictions(to_decode, 5)
>>> print(decoded)
'''