-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline.py
379 lines (314 loc) · 16.9 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
'''
移动基站退服预测 baseline 0.616
团队: 虎牙大哥
'''
import os
import pandas as pd
import numpy as np
import datetime
import requests
import json
from sklearn.model_selection import StratifiedKFold,GridSearchCV,train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score,roc_auc_score,roc_curve,auc,accuracy_score,precision_score
from sklearn.preprocessing import OneHotEncoder,LabelEncoder
import lightgbm as lgb
import gc
from tqdm import tqdm
import time
import datetime
train_path = '/mnt/5/Alert_BTS_HW_1001-0309'
# 0316-0322
test_0322_path = '/mnt/5/Alert_BTS_HW_0316-0322'
#0324-0330
test_0330_path = '/mnt/5/Alert_BTS_HW_0324-0330'
# 处理测试数据集
all_test_data = pd.DataFrame()
for now_csv in tqdm(os.listdir(test_0322_path)):
data = pd.read_csv(os.path.join(test_0322_path, now_csv))
data['end_time'] = '2020-03-23'
data['label'] = -1
data['ID'] = data['基站名称']
all_test_data = all_test_data.append(data)
for now_csv in tqdm(os.listdir(test_0330_path)):
data = pd.read_csv(os.path.join(test_0330_path, now_csv))
data['end_time'] = '2020-03-31'
data['label'] = -1
data['ID'] = data['基站名称']
all_test_data = all_test_data.append(data)
all_test_data['end_time'] = pd.to_datetime(all_test_data['end_time'], format='%Y-%m-%d')
all_test_data['告警开始时间'] = pd.to_datetime(all_test_data['告警开始时间'], format='%Y-%m-%d %H:%M:%S')
all_test_data['time_gap'] = all_test_data.apply(lambda x: (x['end_time'] - x['告警开始时间']).days, axis=1)
all_test_data['time_gap'] += 1
# 构造训练数据集
def get_all_train_data(train_path):
all_train_data = pd.DataFrame()
ID = 0
print(len(os.listdir(train_path)))
for now_csv in tqdm(os.listdir(train_path)):
data = pd.read_csv(os.path.join(train_path,now_csv))
all_train_data = all_train_data.append(data)
all_train_data['end_time'] = '2020-03-10'
all_train_data['告警开始时间'] = pd.to_datetime(all_train_data['告警开始时间'], format='%Y-%m-%d %H:%M:%S')
all_train_data['end_time'] = pd.to_datetime(all_train_data['end_time'], format='%Y-%m-%d')
all_train_data['time_gap'] = all_train_data.apply(lambda x: (x['end_time']-x['告警开始时间']).days, axis=1)
return all_train_data
save_path = './all_train_data.csv'
if not os.path.exists(save_path):
all_train_data = get_all_train_data(train_path)
all_train_data.to_csv(save_path, index=False)
all_train_data = pd.read_csv('all_train_data.csv')
# 生成训练集
def gener_train_data(all_data, times):
'''
start_i: 从第几天开始抽取
times: 抽取多少次
'''
print('*********')
res_data = pd.DataFrame()
all_data['end_time'] = pd.to_datetime(all_data['end_time'], format='%Y-%m-%d %H:%M:%S')
for i in tqdm(range(times)):
label_data = all_data[all_data['time_gap'] == i]
# 生成label
label_data['label'] = label_data['告警名称'].apply(
lambda x: 1 if x.strip() == '网元连接中断' or x.strip() == '小区不可用告警' else 0)
label_data = label_data.groupby('基站名称')['label'].agg('sum').reset_index()
label_data['label'] = label_data['label'].apply(lambda x: 1 if x > 0 else 0)
# 取前7天的训练数据
tmp_data = all_data[(all_data['time_gap'] > i) & (all_data['time_gap'] <= i + 7)]
# 处理时间 保持同一个窗口内,大小为7i
tmp_data['time_gap'] = tmp_data['time_gap'] - i
tmp_data = tmp_data.merge(label_data, on='基站名称', how='left')
tmp_data['ID'] = tmp_data['基站名称'] + '_' + str(i)
tmp_data['end_time'] = tmp_data['end_time'] - datetime.timedelta(days=i)
res_data = res_data.append(tmp_data)
return res_data
# 生成 的训练数据
def get_train_data(all_data, times=1):
save_path = './all_train_data_sample_'+str(times)+'.csv'
if not os.path.exists(save_path):
res_data = gener_train_data(all_data, times)
res_data.to_csv(save_path, index=False)
res_data = pd.read_csv(save_path)
return res_data
offline_train_data = get_train_data(all_train_data, times=30)
# 构造特征
def gener_fea(data):
res = data[['ID', 'end_time', 'label']].drop_duplicates()
# 构造特征
# 1、统计每个样本在1,2,3,4,5,6,7天内故障出现的总次数
tmp = data.groupby(by=['ID', 'time_gap']).agg({'基站名称': 'count'}).reset_index()
tmp = pd.pivot_table(tmp, index='ID', columns='time_gap', values='基站名称').reset_index()
# 7天内故障的总次数
tmp['sum_guzhang_7'] = tmp[[1, 2, 3, 4, 5, 6, 7]].apply(lambda x: x.sum(), axis=1)
tmp.rename(columns={1: 'guzhang_1', 2: 'guzhang_2', 3: 'guzhang_3', 4: 'guzhang_4', 5: 'guzhang_5', 6: 'guzhang_6',
7: 'guzhang_7'}, inplace=True)
res = res.merge(tmp, on='ID', how='left')
# 7天内出现故障的总类型数量
tmp = data.groupby(by=['ID']).agg({'告警名称': 'nunique'}).reset_index().rename(columns={'告警名称': '7_gaojing_nunique'})
res = res.merge(tmp, on='ID', how='left')
# 每天出现故障的类型数量
tmp = data.groupby(by=['ID', 'time_gap']).agg({'告警名称': 'nunique'}).reset_index()
tmp = pd.pivot_table(tmp, index='ID', columns='time_gap', values='告警名称').reset_index()
tmp.rename(columns={1: 'guzhang_types_1', 2: 'guzhang_types_2', 3: 'guzhang_types_3', 4: 'guzhang_types_4',
5: 'guzhang_types_5',
6: 'guzhang_types_6', 7: 'guzhang_types_7'}, inplace=True)
res = res.merge(tmp, on='ID', how='left')
# 7天内出现故障的天数
tmp = data.groupby(by=['ID']).agg({'time_gap': 'nunique'}).reset_index().rename(
columns={'time_gap': 'time_gap_nunique'})
res = res.merge(tmp, on='ID', how='left')
# 7天内,平均每天的故障次数
res['sum_guzhang_7/7'] = res['sum_guzhang_7'] / 7
# 发生故障时,平均每天的故障次数
res['sum_guzhang_7/time_gap_nunique'] = res['sum_guzhang_7'] / res['time_gap_nunique']
# 故障告警、异常告警、失败告警、
def get_guzhang(x, gaojing_type):
res = 0
for i in x:
if i.find(gaojing_type) != -1:
res += 1
return res
# 故障类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, '故障')).reset_index().rename(columns={'告警名称': 'guzhang_sum'})
res = res.merge(tmp, on='ID', how='left')
# 异常类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, '异常')).reset_index().rename(columns={'告警名称': 'yichang_sum'})
res = res.merge(tmp, on='ID', how='left')
# 失败类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, '失败')).reset_index().rename(columns={'告警名称': 'shibai_sum'})
res = res.merge(tmp, on='ID', how='left')
# 小区类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, '小区')).reset_index().rename(columns={'告警名称': 'xiaoqu_sum'})
res = res.merge(tmp, on='ID', how='left')
# 射频类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, '射频')).reset_index().rename(columns={'告警名称': 'shepin_sum'})
res = res.merge(tmp, on='ID', how='left')
# BBU类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, 'BBU')).reset_index().rename(columns={'告警名称': 'BBU_sum'})
res = res.merge(tmp, on='ID', how='left')
# RHUB类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, 'RHUB')).reset_index().rename(columns={'告警名称': 'RHUB_sum'})
res = res.merge(tmp, on='ID', how='left')
# 射频类告警的次数
tmp = data.groupby(by=['ID'])['告警名称'].apply(
lambda x: get_guzhang(x, 'RRU')).reset_index().rename(columns={'告警名称': 'RRU_sum'})
res = res.merge(tmp, on='ID', how='left')
# 7天内发生 网元连接中断 和 小区不可用告警 的天数
tmp = data[(data['告警名称'] == '网元连接中断') | (data['告警名称'] == '小区不可用告警')]
tmp['start_time'] = tmp['告警开始时间'].apply(lambda x: str(x)[:10])
tmp = tmp.drop_duplicates(subset=['ID', 'start_time'], keep='first')
tmp = tmp.groupby(['ID']).agg({'start_time': 'nunique'}).reset_index().rename(columns={'start_time': 'label1_days'})
res = res.merge(tmp, on='ID', how='left')
# 最近一次发生 网元连接中断 和 小区不可用告警 的天数 距今的时间
tmp = data[(data['告警名称'] == '网元连接中断') | (data['告警名称'] == '小区不可用告警')]
tmp['告警开始时间'] = pd.to_datetime(tmp['告警开始时间'], format='%Y-%m-%d %H:%M:%S')
tmp['end_time'] = pd.to_datetime(tmp['end_time'], format='%Y-%m-%d %H:%M:%S')
tmp['near_label1_gaojing_gap'] = tmp.apply(lambda x: (x['end_time'] - x['告警开始时间']).days, axis=1)
tmp2 = tmp.groupby(by=['ID', '告警名称']).agg({'near_label1_gaojing_gap': 'min'}).reset_index()
tmp2 = pd.pivot_table(tmp2, index='ID', columns='告警名称', values='near_label1_gaojing_gap').reset_index().rename(
columns={'网元连接中断': 'near_wangyuan_gap', '小区不可用告警': 'near_xiaoqu_gap'})
res = res.merge(tmp2, on='ID', how='left')
# 每个 网元连接中断 或 小区不可用告警 的时间间隔
tmp3 = tmp
rename = 'label1_gap'
tmp3.sort_values(['ID', '告警开始时间'], inplace=True)
tmp3['next_gaojing_time'] = tmp3.groupby(by=['ID'])['告警开始时间'].shift(-1)
tmp3['gaojing_gaps'] = tmp3.apply(lambda x: (x['next_gaojing_time'] - x['告警开始时间']).seconds, axis=1)
tmp3 = tmp3[['ID', '告警开始时间', 'next_gaojing_time', 'gaojing_gaps']]
tmp3.dropna(subset=['gaojing_gaps'], inplace=True)
tmp3 = tmp3.groupby(by=['ID'])['gaojing_gaps'].agg(['max', 'min', 'mean', 'std', 'skew']).reset_index().rename(
columns={'max': rename + '_max', 'min': rename + '_min', 'mean': rename + '_mean', 'std': rename + '_std',
'skew': rename + '_skew'})
res = res.merge(tmp3, on='ID', how='left')
# print(tmp3)
# 统计每个告警类型,在7天内发生的次数
tmp = data.groupby(by=['ID', '告警名称']).agg({'基站名称': 'count'}).reset_index()
tmp = pd.pivot_table(tmp, index='ID', columns='告警名称', values='基站名称').reset_index()
cols = {}
i = 0
for col in tmp.columns:
if col not in ['ID', 'end_time', 'label']:
cols[col] = i
i += 1
tmp.rename(columns=cols, inplace=True)
res = res.merge(tmp, on='ID', how='left')
res['0/sum7'] = res[0] / res['sum_guzhang_7']
res['1/sum7'] = res[1] / res['sum_guzhang_7']
res['3/sum7'] = res[3] / res['sum_guzhang_7']
return res
def search_threthold(true, pred):
score = 0
bestThrethold = 0
for i in np.arange(0, 1, 0.01):
if f1_score(true, np.where(pred > i, 1, 0)) > score:
score = f1_score(true, np.where(pred > i, 1, 0))
bestThrethold = i
else:
pass
return bestThrethold
def train_lgb_model(train_, valid_, valid_2, id_name, label_name, categorical_feature=None, seed=1024, is_shuffle=True):
folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)
train_['res'] = 0
pred = [col for col in train_.columns if col not in [id_name, label_name, 'res']]
print('特征数量为:', len(pred))
sub_preds = np.zeros((valid_.shape[0], folds.n_splits))
sub_preds2 = np.zeros((valid_2.shape[0], folds.n_splits))
params = {
'learning_rate': 0.01,
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': ['binary_logloss', 'auc'],
'num_leaves': 32,
'feature_fraction': 0.7,
'bagging_fraction': 0.7,
'bagging_freq': 5,
'seed': 1,
# 'device': 'gpu',
'bagging_seed': 1,
'feature_fraction_seed': 7,
'min_data_in_leaf': 28,
'nthread': -1,
'verbose': -1,
}
fea_impor = pd.DataFrame()
fea_impor['column'] = train_[pred].columns
fea_impor['importance'] = 0
for n_fold, (train_idx, valid_idx) in enumerate(folds.split(train_, train_[label_name]), start=1):
print(f'the {n_fold} training start ...')
train_x, train_y = train_[pred].iloc[train_idx], train_[label_name].iloc[train_idx]
valid_x, valid_y = train_[pred].iloc[valid_idx], train_[label_name].iloc[valid_idx]
dtrain = lgb.Dataset(train_x, label=train_y)
dvalid = lgb.Dataset(valid_x, label=valid_y)
clf = lgb.train(
params=params,
train_set=dtrain,
num_boost_round=1000,
valid_sets=[dtrain, dvalid],
early_stopping_rounds=100,
# feval=fscore,
verbose_eval=100,
)
fea_impor['tmp'] = clf.feature_importance()
fea_impor['importance'] = fea_impor['importance'] + fea_impor['tmp']
sub_preds[:, n_fold - 1] = clf.predict(valid_[pred], num_iteration=clf.best_iteration)
sub_preds2[:, n_fold - 1] = clf.predict(valid_2[pred], num_iteration=clf.best_iteration)
train_pred = clf.predict(valid_x, num_iteration=clf.best_iteration)
tmp_score = roc_auc_score(valid_y, train_pred)
train_['res'].iloc[valid_idx] = train_['res'].iloc[valid_idx] + train_pred
print(f'Orange roc_auc_score score: {tmp_score}')
tmp_score = roc_auc_score(train_[label_name], train_['res'])
print(f'five flod roc_auc_score score: {tmp_score}')
train_.sort_values(by=['res'], ascending=False, inplace=True)
# 按照0.5划分
th = search_threthold(train_[label_name], train_['res'])
train_['res'] = train_['res'].apply(lambda x: 1 if x > th else 0)
tmp_f1 = f1_score(train_[label_name], train_['res'])
print(f'five flod tmp_f1 score: {th, tmp_f1}')
valid_[label_name] = np.mean(sub_preds, axis=1)
valid_2[label_name] = np.mean(sub_preds2, axis=1)
valid_['基站名称'] = valid_[id_name]
valid_2['基站名称'] = valid_2[id_name]
valid_['未来24小时发生退服类告警的概率'] = valid_[label_name]
valid_2['未来24小时发生退服类告警的概率'] = valid_2[label_name]
return th, valid_[['基站名称', '未来24小时发生退服类告警的概率']], valid_2[['基站名称', '未来24小时发生退服类告警的概率']],valid_2[['基站名称', '未来24小时发生退服类告警的概率']], valid_2[['基站名称', '未来24小时发生退服类告警的概率']]
online_train_data = get_train_data(all_train_data, start_i=0, times=30)
all_data = online_train_data.append(all_test_data)
all_data_fea = gener_fea(all_data)
tmp = online_train_data.groupby(by=['ID'])['告警名称'].apply(lambda x: ' '.join(x.tolist())).reset_index()
all_data_fea['end_time'] = all_data_fea['end_time'].apply(lambda x:str(x)[:10])
train_data=all_data_fea[(all_data_fea['end_time']!='2020-03-23') & (all_data_fea['end_time']!='2020-03-31')]
test1_data=all_data_fea[all_data_fea['end_time']=='2020-03-23']
test2_data=all_data_fea[all_data_fea['end_time']=='2020-03-31']
cols = [col for col in train_data.columns if col not in ['ID','label','end_time']]
val1, val2 = train_lgb_model(train_data[cols+['ID','label']], test1_data[cols+['ID']], test2_data[cols+['ID']], 'ID', 'label')
val1.to_csv('./Sample23_1日.csv', index=False)
val2.to_csv('./Sample31_1日.csv', index=False)
cols = [col for col in train_data.columns if col not in ['ID','label','end_time']]
th, val1, val2 = train_lgb_model(train_data[cols+['ID','label']], test1_data[cols+['ID']], test2_data[cols+['ID']], 'ID', 'label')
val1.to_csv('./Sample23_1日.csv', index=False)
val2.to_csv('./Sample31_1日.csv', index=False)
# 生成提交文件
sub1 = pd.read_csv('/mnt/5/提交文件样例/Sample23日.csv', encoding='gbk')
sub2 = pd.read_csv('/mnt/5/提交文件样例/Sample31日.csv', encoding='gbk')
val1['未来24小时发生退服类告警的概率'] = val1['未来24小时发生退服类告警的概率'].apply(lambda x: 1 if x>th else 0)
val2['未来24小时发生退服类告警的概率'] = val2['未来24小时发生退服类告警的概率'].apply(lambda x: 1 if x>th else 0)
sub1 = sub1[['基站名称']].merge(val1, on='基站名称', how='left')
sub2 = sub2[['基站名称']].merge(val2, on='基站名称', how='left')
sub1.to_csv('/root/models/results/Sample23日.csv', index=False)
sub2.to_csv('/root/models/results/Sample31日.csv', index=False)
import sklearn.preprocessing as pre_processing
import numpy as np
label = pre_processing.LabelEncoder()
label.fit()
labels = label.fit_transform(['中国', '美国', '法国', '德国'])
print(labels)