-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclusteringTest.py
182 lines (148 loc) · 6.43 KB
/
clusteringTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import pickle
import numpy as np
import itertools
import torch
import netClasses as nc
import prepareDataForTraining as pdft
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.neighbors import NearestNeighbors
from sklearn.decomposition import PCA
from importlib import reload
from collections import Counter
reload(pdft)
reload(nc)
pickle_name = 'parsed_patterns.pik'
def evaluate_clustering(test_occs, labels_true, model, pOccs, subset='all', eps_pctiles=None, reduce_with_pca=-1):
fkeys = list(pOccs.values())[0].occFeatures.keys()
sorted_fkeys = sorted(pdft.keys_subset(fkeys, subset))
full_data = []
for occ_name in test_occs:
occ = pOccs[occ_name]
arr = [occ.occFeatures[fkey] for fkey in sorted_fkeys]
full_data.append(arr)
if reduce_with_pca > 0:
pca = PCA(reduce_with_pca)
reduced_data = pca.fit_transform(np.array(full_data))
full_data = reduced_data
with torch.no_grad():
full_data = torch.tensor(full_data).float()
test_data = model.subspace(full_data).detach().numpy()
return perform_dbscan(test_data, labels_true, eps_pctiles)
def evaluate_clustering_pca(test_occs, labels_true, pOccs, n_components=10, subset='all', eps_pctiles=None):
'''
use dimensionality reduction with no distance learning, cluster data, and see how well
the found clusters match up with ground truth.
'''
fkeys = list(pOccs.values())[0].occFeatures.keys()
sorted_fkeys = sorted(pdft.keys_subset(fkeys, subset))
full_data = []
for occ_name in test_occs:
feats = [pOccs[occ_name].occFeatures[fkey] for fkey in sorted_fkeys]
full_data.append(feats)
pca = PCA(n_components)
reduced_data = pca.fit_transform(full_data)
return perform_dbscan(reduced_data, labels_true, eps_pctiles)
def perform_dbscan(test_data, labels_true, eps_pctiles=None, min_samples=3):
labels_true = np.array(labels_true)
n_clusters_true = len(set(labels_true)) - (1 if -1 in labels_true else 0)
all_idxs = np.ones_like(labels_true, dtype='bool')
in_noise_idxs = (labels_true != -1)
all_label_sets = [all_idxs, in_noise_idxs]
eps_to_try = estimate_best_epsilons(test_data, eps_pctiles, k=min_samples)
labellings = []
all_results = {}
for ep_num, ep in enumerate(eps_to_try):
db = DBSCAN(eps=ep, metric='l1', min_samples=min_samples).fit(test_data)
n_clusters_ = len(set(db.labels_)) - (1 if -1 in db.labels_ else 0)
# core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
# core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
labellings.append(labels)
c = Counter(l for l in labels if l > 0)
med_clust_size = np.median(list(c.values()))
mean_clust_size = np.mean(list(c.values()))
for i, idxs in enumerate(all_label_sets):
res_str = 'eps {}, sig_only {}'.format(ep_num, i)
l = labels[idxs]
lt = labels_true[idxs]
td = test_data[idxs]
if n_clusters_ < 2:
print('degenerate clustering')
all_results[res_str] = False
continue
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(l)) - (1 if -1 in l else 0)
n_noise_ = list(l).count(-1)
results = {}
results['epsilon'] = ep
results['num_clusters'] = n_clusters_
results['median_cluster_size'] = med_clust_size
results['mean_cluster_size'] = mean_clust_size
results['num_clusters_ratio'] = np.round(n_clusters_ / n_clusters_true, 3)
results['num_noise_points'] = n_noise_
results['homogeneity_score'] = np.round(metrics.homogeneity_score(lt, l), 3)
results['completeness'] = np.round(metrics.completeness_score(lt, l), 3)
results['V-v_measure_score'] = np.round(metrics.v_measure_score(lt, l), 3)
results['adjusted_rand_score'] = np.round(metrics.adjusted_rand_score(lt, l), 3)
try:
results['silhouette_score'] = np.round(metrics.silhouette_score(td, l), 3)
except ValueError:
results['silhouette_score'] = -1
all_results[res_str] = results
return all_results, labellings
def estimate_best_epsilons(reduced_data, percentiles=None, k=3):
if percentiles is None:
percentiles = [90]
nbrs = NearestNeighbors(n_neighbors=k, metric='l1').fit(reduced_data)
distances, indices = nbrs.kneighbors(reduced_data)
k_dist = sorted([x[-1] for x in distances])
k_dist_pctiles = [np.percentile(k_dist, q) for q in percentiles]
for i, val in enumerate(k_dist_pctiles):
if val == 0:
k_dist_pctiles[i] = min([x for x in k_dist_pctiles if x > 0]) / 2
# plt.clf()
# plt.plot(sorted(k_dist, reverse=True), c='k', lw=2)
# plt.axvline(x=len(k_dist) * 0.05, c='k', ls=':', lw=1)
# plt.xlabel('Data points, ranked by distance')
# plt.ylabel('Distance of k-th nearest neighbor')
# plt.xlim(-5, len(k_dist))
# plt.ylim(0, max(k_dist))
# plt.savefig('kdistgraph.png', bbox_inches='tight', dpi=300)
# plt.show()
return k_dist_pctiles
if __name__ == '__main__':
print("loading data from file...")
with open(pickle_name, "rb") as f:
dat = pickle.load(f)
songs = dat[0]
pClasses = dat[1]
pOccs = dat[2]
annPClassNames = dat[3]
annPOccNames = dat[4]
genPClassNames = dat[5]
genPOccNames = dat[6]
filtGenPClassNames = dat[7]
sorted_fkeys = sorted(list(pOccs.values())[0].occFeatures.keys())
# master list of all occs involved:
test_occs = []
labels_true = []
for i, pn in enumerate(annPClassNames):
occNames = pClasses[pn].occNames
for on in occNames:
test_occs.append(on)
labels_true.append(i)
# add noisy occs:
for i in range(len(genPOccNames) * 1):
test_occs.append(str(genPOccNames[i]))
labels_true.append(-1)
# load saved model
# model = nc.FFNetDistance(num_feats=len(sorted_fkeys), dim_size=10)
# model.load_state_dict(torch.load('saved_model.pt'))
# model.eval()
# print('performing clustering...')
# res = evaluate_clustering(test_occs, labels_true, pOccs, n_components=3, subset='all')
res = evaluate_clustering_pca(test_occs, labels_true, pOccs, n_components=10, subset='all')
print(res)