-
Notifications
You must be signed in to change notification settings - Fork 281
/
Copy pathpetal.py
267 lines (216 loc) · 13.3 KB
/
petal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import os
import json
from collections import Counter
from typing import Dict, List
import numpy as np
import random
import torch
from transformers import PreTrainedTokenizer, RobertaTokenizer
from pet.tasks import PROCESSORS, load_examples, TRAIN_SET
from pet.utils import InputExample, eq_div
from pet.wrapper import TransformerModelWrapper, MODEL_CLASSES, WrapperConfig
import log
logger = log.get_logger('root')
def filter_words(tokens: List[str], word_counts=None, max_words: int = -1):
"""
Given a list of tokens, return a reduced list that contains only tokens from the list that correspond
to actual words and occur a given number of times.
:param tokens: the list of tokens to filter
:param word_counts: a dictionary mapping words to their number of occurrences
:param max_words: if set to a value >0, only the `max_words` most frequent words according to `word_counts` are kept
:return: the filtered list of tokens
"""
tokens = (word for word in tokens if word[0] == 'Ġ' and len([char for char in word[1:] if char.isalpha()]) >= 2)
if word_counts and max_words > 0:
tokens = sorted(tokens, key=lambda word: word_counts[word[1:]], reverse=True)[:max_words]
return tokens
def get_word_to_id_map(tokenizer: PreTrainedTokenizer, word_counts=None, max_words: int = -1):
"""
Return a mapping from all tokens to their internal ids for a given tokenizer
:param tokenizer: the tokenizer
:param word_counts: a dictionary mapping words to their number of occurrences
:param max_words: if set to a value >0, only the `max_words` most frequent words according to `word_counts` are kept
:return:
"""
if not isinstance(tokenizer, RobertaTokenizer):
raise ValueError("this function currently only supports instances of 'RobertaTokenizer'")
words = filter_words(tokenizer.encoder.keys(), word_counts, max_words)
word2id = {word[1:]: tokenizer.convert_tokens_to_ids(word) for word in words}
logger.info(f"There are {len(word2id)} words left after filtering non-word tokens")
return word2id
class AutomaticVerbalizerSearch:
def __init__(self, word2idx: Dict[str, int], labels: List[str], logits_list: List[np.ndarray],
expected: Dict[str, np.ndarray]):
self.word2idx = word2idx
self.labels = labels
self.expected = expected
logits_list = [np.exp(logits) for logits in logits_list]
self.probs_list = [logits / np.expand_dims(np.sum(logits, axis=1), axis=1) for logits in logits_list]
def _get_candidates(self, num_candidates: int) -> Dict[str, List[str]]:
if num_candidates <= 0:
return {label: self.word2idx.keys() for label in self.labels}
scores = {label: Counter() for label in self.labels}
for label in self.labels:
for probs in self.probs_list:
for word, idx in self.word2idx.items():
score = np.sum(np.log(probs[:, idx]) * self.expected[label])
scores[label][word] += score
return {label: [w for w, _ in scores[label].most_common(num_candidates)] for label in self.labels}
def _get_top_words(self, candidates: Dict[str, List[str]], normalize: bool = True, words_per_label: int = 10,
score_fct: str = 'llr') -> Dict[str, List[str]]:
scores = {label: Counter() for label in self.labels}
for label in self.labels:
for probs in self.probs_list:
for word in candidates[label]:
idx = self.word2idx[word]
if score_fct == 'llr':
scores[label][word] += self.log_likelihood_ratio(probs[:, idx], self.expected[label], normalize)
elif score_fct == 'ce':
scores[label][word] += self.cross_entropy(probs[:, idx], self.expected[label], normalize)
else:
raise ValueError(f"Score function '{score_fct}' not implemented")
return {label: [w for w, _ in scores[label].most_common(words_per_label)] for label in self.labels}
@staticmethod
def log_likelihood_ratio(predictions: np.ndarray, expected: np.ndarray, normalize: bool) -> float:
scale_factor = sum(1 - expected) / sum(expected) if normalize else 1
pos_score = scale_factor * (np.sum(np.log(predictions) * expected) - np.sum(np.log(1 - predictions) * expected))
neg_score = np.sum(np.log(1 - predictions) * (1 - expected)) - np.sum(np.log(predictions) * (1 - expected))
return pos_score + neg_score
@staticmethod
def cross_entropy(predictions: np.ndarray, expected: np.ndarray, normalize: bool) -> float:
scale_factor = sum(1 - expected) / sum(expected) if normalize else 1
pos_score = scale_factor * np.sum(np.log(predictions) * expected)
neg_score = np.sum(np.log(1 - predictions) * (1 - expected))
return pos_score + neg_score
def find_verbalizer(self, words_per_label: int = 10, num_candidates: int = 1000, normalize: bool = True,
score_fct: str = 'llr'):
if score_fct == 'random':
return {label: random.sample(self.word2idx.keys(), words_per_label) for label in self.labels}
candidates = self._get_candidates(num_candidates=num_candidates)
return self._get_top_words(candidates=candidates, normalize=normalize, words_per_label=words_per_label,
score_fct=score_fct)
def main():
parser = argparse.ArgumentParser()
# required parameters
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory. The verbalizers are written to a file 'verbalizer.json' in this directory.")
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the data files for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="The model type")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name")
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(PROCESSORS.keys()))
# verbalizer search hyperparameters
parser.add_argument("--normalize", action='store_true',
help="Whether to normalize the loss as proposed in the paper. It is recommended to set this to 'true'.")
parser.add_argument("--combine_patterns", action='store_true',
help="If set to true, a single joint verbalizer is searched for all patterns")
parser.add_argument("--num_candidates", default=1000, type=int,
help="The number of candidate tokens to consider as verbalizers (see Section 4.1 of the paper)")
parser.add_argument("--words_per_label", default=10, type=int,
help="The number of verbalizer tokens to assign to each label")
parser.add_argument("--score_fct", default='llr', choices=['llr', 'ce', 'random'],
help="The function used to score verbalizers. Choices are: the log-likelihood ratio loss proposed in the paper "
"('llr'), cross-entropy loss ('ce') and 'random', which assigns random tokens to each label.")
# other optional parameters
parser.add_argument("--train_examples", default=50, type=int,
help="The total number of train examples to use, where -1 equals all examples.")
parser.add_argument("--pattern_ids", default=[0], type=int, nargs='+',
help="The ids of the PVPs to be used")
parser.add_argument("--max_seq_length", default=256, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--words_file", default=None, type=str,
help="Path to a file containing (unlabeled) texts from the task's domain. This text is used to compute "
"verbalization candidates by selecting the most frequent words.")
parser.add_argument("--max_words", default=10000, type=int,
help="Only the 10,000 tokens that occur most frequently in the task’s unlabeled data (see --words_file) are "
"considered as verbalization candidates")
parser.add_argument("--additional_input_examples", type=str,
help="An optional path to an additional set of input examples (e.g., obtained using iPET)")
parser.add_argument("--seed", default=42, type=int,
help="random seed for initialization")
args = parser.parse_args()
random.seed(args.seed)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
with open(os.path.join(args.output_dir, 'config.txt'), 'w', encoding='utf8') as fh:
json.dump(args.__dict__, fh, indent=2)
# setup gpu/cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
# prepare task
args.task_name = args.task_name.lower()
if args.task_name not in PROCESSORS:
raise ValueError("Task not found: {}".format(args.task_name))
processor = PROCESSORS[args.task_name]()
args.label_list = processor.get_labels()
args.cache_dir = ""
args.do_lower_case = False
args.verbalizer_file = None
args.wrapper_type = 'mlm'
# get training data
train_examples_per_label = eq_div(args.train_examples, len(args.label_list)) if args.train_examples != -1 else -1
train_data = load_examples(args.task_name, args.data_dir, set_type=TRAIN_SET, num_examples_per_label=train_examples_per_label)
if args.additional_input_examples:
additional_data = InputExample.load_examples(args.additional_input_examples)
train_data += additional_data
logger.info(f"Loaded {len(additional_data)} additional examples from {args.additional_input_examples}, total"
f"training set size is now {len(train_data)}")
expected = {label: np.array([1 if x.label == label else 0 for x in train_data]) for label in args.label_list}
if args.words_file:
with open(args.words_file, 'r', encoding='utf8') as fh:
word_counts = Counter(fh.read().split())
else:
word_counts = None
tokenizer_class = MODEL_CLASSES[args.model_type]['tokenizer']
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
word2idx = get_word_to_id_map(tokenizer, word_counts=word_counts, max_words=args.max_words)
logits = []
for pattern_id in args.pattern_ids:
logger.info(f"Processing examples with pattern id {pattern_id}...")
args.pattern_id = pattern_id
config = WrapperConfig(model_type=args.model_type, model_name_or_path=args.model_name_or_path, wrapper_type='mlm',
task_name=args.task_name, max_seq_length=args.max_seq_length, label_list=args.label_list,
pattern_id=args.pattern_id)
wrapper = TransformerModelWrapper(config)
wrapper.model.to(device)
# modify all patterns so that they return a single text segment instead of two segments
get_parts = wrapper.preprocessor.pvp.get_parts
wrapper.preprocessor.pvp.get_parts = lambda example: (get_parts(example)[0] + get_parts(example)[1], [])
wrapper.preprocessor.pvp.convert_mlm_logits_to_cls_logits = lambda mask, x, _=None: x[mask >= 0]
pattern_logits = wrapper.eval(train_data, device, per_gpu_eval_batch_size=args.per_gpu_eval_batch_size, n_gpu=args.n_gpu)['logits']
pattern_logits = pattern_logits - np.expand_dims(np.max(pattern_logits, axis=1), axis=1)
logits.append(pattern_logits)
logger.info("Starting verbalizer search...")
if args.combine_patterns:
avs = AutomaticVerbalizerSearch(word2idx, args.label_list, logits, expected)
verbalizer = avs.find_verbalizer(
num_candidates=args.num_candidates,
words_per_label=args.words_per_label,
normalize=args.normalize,
score_fct=args.score_fct
)
verbalizers = {pattern_id: verbalizer for pattern_id in args.pattern_ids}
else:
verbalizers = {}
for idx, pattern_id in enumerate(args.pattern_ids):
avs = AutomaticVerbalizerSearch(word2idx, args.label_list, [logits[idx]], expected)
verbalizers[pattern_id] = avs.find_verbalizer(
num_candidates=args.num_candidates,
words_per_label=args.words_per_label,
normalize=args.normalize,
score_fct=args.score_fct
)
print(json.dumps(verbalizers, indent=2))
logger.info("Verbalizer search complete, writing output...")
with open(os.path.join(args.output_dir, 'verbalizers.json'), 'w', encoding='utf8') as fh:
json.dump(verbalizers, fh, indent=2)
logger.info("Done")
if __name__ == "__main__":
main()