-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
205 lines (180 loc) · 8.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import torch
import gym
import argparse
import os
import d4rl
from tqdm import trange
from coolname import generate_slug
import time
import json
import yaml
from log import Logger
import utils
from utils import VideoRecorder
import SPOT
from vae import VAE
from eval import eval_policy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Experiment
parser.add_argument("--policy", default="SPOT_TD3") # Policy name
parser.add_argument("--env", default="hopper-medium-v0") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--eval_freq", default=5e3, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment
parser.add_argument("--save_model", default=False, action="store_true") # Save model and optimizer parameters
parser.add_argument('--save_model_final', default=True, action='store_true')
parser.add_argument('--eval_episodes', default=10, type=int)
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--clip_to_eps', default=False, action='store_true')
# TD3
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005) # Target network update rate
parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument('--lr', default=3e-4, type=float)
parser.add_argument('--actor_lr', default=None, type=float)
# TD3 actor-critic
parser.add_argument('--actor_hidden_dim', default=256, type=int)
parser.add_argument('--critic_hidden_dim', default=256, type=int)
parser.add_argument('--actor_init_w', default=None, type=float)
parser.add_argument('--critic_init_w', default=None, type=float)
parser.add_argument('--actor_dropout', default=0.1, type=float)
# TD3 + BC
parser.add_argument("--alpha", default=0.4, type=float)
parser.add_argument("--normalize", default=True)
# VAE
parser.add_argument('--vae_model_path', default=None, type=str)
parser.add_argument('--beta', default=0.5, type=float)
parser.add_argument('--latent_dim', default=None, type=int)
parser.add_argument('--iwae', default=False, action='store_true')
parser.add_argument('--num_samples', default=1, type=int)
# SPOT
parser.add_argument('--lambd', default=1.0, type=float)
parser.add_argument('--without_Q_norm', default=False, action='store_true')
parser.add_argument('--lambd_cool', default=False, action='store_true')
parser.add_argument('--lambd_end', default=0.2, type=float)
# Antmaze
parser.add_argument('--antmaze_center_reward', default=0.0, type=float)
parser.add_argument('--antmaze_no_normalize', default=False, action='store_true')
# Work dir
parser.add_argument('--notes', default=None, type=str)
parser.add_argument('--work_dir', default='tmp', type=str)
# Config
parser.add_argument('--config', default=None, type=str)
args = parser.parse_args()
# log config
if args.config is not None:
with open(args.config, 'r') as f:
parser.set_defaults(**yaml.load(f.read(), Loader=yaml.FullLoader))
args = parser.parse_args()
args.cooldir = generate_slug(2)
# Build work dir
base_dir = 'runs'
utils.make_dir(base_dir)
base_dir = os.path.join(base_dir, args.work_dir)
utils.make_dir(base_dir)
args.work_dir = os.path.join(base_dir, args.env)
utils.make_dir(args.work_dir)
# make directory
ts = time.gmtime()
ts = time.strftime("%m-%d-%H:%M", ts)
exp_name = str(args.env) + '-' + ts + '-bs' + str(args.batch_size) + '-s' + str(args.seed)
if args.policy == 'SPOT_TD3':
exp_name += '-lamb' + str(args.lambd) + '-b' + \
str(args.beta) + '-a' + str(args.antmaze_center_reward) + '-lr' + str(args.lr)
else:
raise NotImplementedError
exp_name += '-' + args.cooldir
if args.notes is not None:
exp_name = args.notes + '_' + exp_name
args.work_dir = args.work_dir + '/' + exp_name
utils.make_dir(args.work_dir)
args.model_dir = os.path.join(args.work_dir, 'model')
utils.make_dir(args.model_dir)
args.video_dir = os.path.join(args.work_dir, 'video')
utils.make_dir(args.video_dir)
with open(os.path.join(args.work_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, sort_keys=True, indent=4)
utils.snapshot_src('.', os.path.join(args.work_dir, 'src'), '.gitignore')
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
# TD3
"policy_noise": args.policy_noise * max_action,
"noise_clip": args.noise_clip * max_action,
"policy_freq": args.policy_freq,
# SPOT
"lambd": args.lambd,
"lr": args.lr,
"actor_lr": args.actor_lr,
"without_Q_norm": args.without_Q_norm,
"num_samples": args.num_samples,
"iwae": args.iwae,
"actor_hidden_dim": args.actor_hidden_dim,
"critic_hidden_dim": args.critic_hidden_dim,
"actor_dropout": args.actor_dropout,
"actor_init_w": args.actor_init_w,
"critic_init_w": args.critic_init_w,
# finetune
# "lambd_cool": args.lambd_cool,
# "lambd_end": args.lambd_end,
}
# Initialize policy
if args.policy == 'SPOT_TD3':
vae = VAE(state_dim, action_dim, args.latent_dim if args.latent_dim else 2 * action_dim, max_action).to(device)
vae.load_state_dict(torch.load(args.vae_model_path))
vae.eval()
kwargs['vae'] = vae
kwargs['beta'] = args.beta
policy = SPOT.SPOT_TD3(**kwargs)
else:
raise NotImplementedError
replay_buffer = utils.ReplayBuffer(state_dim, action_dim)
replay_buffer.convert_D4RL(d4rl.qlearning_dataset(env))
print("Dataset size:", replay_buffer.reward.shape[0])
if 'antmaze' in args.env and args.antmaze_center_reward is not None:
# Center reward for Ant-Maze
# See https://github.com/aviralkumar2907/CQL/blob/master/d4rl/examples/cql_antmaze_new.py#L22
replay_buffer.reward = np.where(replay_buffer.reward == 1.0, args.antmaze_center_reward, -1.0)
if args.normalize and not ('antmaze' in args.env and args.antmaze_no_normalize):
mean, std = replay_buffer.normalize_states()
else:
print("No normalize")
mean, std = 0, 1
if args.clip_to_eps:
replay_buffer.clip_to_eps()
logger = Logger(args.work_dir, use_tb=True)
video = VideoRecorder(dir_name=args.video_dir)
for t in trange(int(args.max_timesteps)):
policy.train(replay_buffer, args.batch_size, logger=logger)
# Evaluate episode
if (t + 1) % args.eval_freq == 0:
eval_episodes = 100 if t + 1 == int(args.max_timesteps) and 'antmaze' in args.env else args.eval_episodes
d4rl_score = eval_policy(args, t + 1, video, logger, policy, args.env,
args.seed, mean, std, eval_episodes=eval_episodes)
if args.save_model:
policy.save(args.model_dir)
if args.save_model_final:
policy.save(args.model_dir)
logger._sw.close()